cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A116916 Expansion of q^(-1/8) * (eta(q)^3 + 3 * eta(q^9)^3) in powers of q^3.

Original entry on oeis.org

1, 5, -7, 0, 0, -11, 0, 13, 0, 0, 0, 0, 17, 0, 0, -19, 0, 0, 0, 0, 0, 0, -23, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 29, 0, 0, 0, 0, -31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -35, 0, 0, 0, 0, 0, 37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 41, 0, 0, 0, 0, 0, 0, -43, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -47, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Feb 26 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 5*x - 7*x^2 - 11*x^5 + 13*x^7 + 17*x^12 - 19*x^15 - 23*x^22 + 25*x^26 + ...
q + 5*q^25 - 7*q^49 - 11*q^121 + 13*q^169 + 17*q^289 - 19*q^361 +...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := SeriesCoefficient[QPochhammer[x + x*O[x]^(3n)]^3 + 3x * QPochhammer[x^9 + O[x]^(3n)]^3, 3n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 06 2015, adapted from PARI *)
    a[ n_] := With[ {m = Sqrt[ 24 n + 1]}, If[ IntegerQ[ m], m KroneckerSymbol[ 3, m] KroneckerSymbol[ -3, m], 0]]; (* Michael Somos, Apr 27 2018 *)
  • PARI
    {a(n) = if( issquare( 24*n + 1, &n), n * kronecker( 3, n) * kronecker( -3, n))};
    
  • PARI
    {a(n) = if( n<1, n==0, n*=3; polcoeff( eta(x + x * O(x^n))^3 + 3 * x * eta(x^9 + x * O(x^n))^3, n))};

Formula

Expansion of f(-x) * a(x) in powers of x where f() is a Ramanujan theta function and a() is a cubic AGM theta function.
Expansion of f(-x)^3 + 3 * x * f(-x^9)^3 in powers of x^3 where f() is a Ramanujan theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (576 t)) = 4608^(1/2) (t / i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A202394.
G.f.: Sum_{k in Z} (-1)^k * (6*k + 1) * x^(k * (3*k + 1) / 2).
a(5*n + 3) = a(5*n + 4) = 0. a(25*n + 1) = 5 * a(n).
a(n) = A010816(3*n).

A204850 Expansion of f(x)^3 - 9 * x * f(x^9)^3 in powers of x where f() is a Ramanujan theta function.

Original entry on oeis.org

1, -6, 0, -5, 0, 0, -7, 0, 0, 0, -18, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, -13, 0, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jan 19 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 6*x - 5*x^3 - 7*x^6 - 18*x^10 + 11*x^15 - 13*x^21 + 30*x^28 + ...
G.f. = q - 6*q^9 - 5*q^25 - 7*q^49 - 18*q^81 + 11*q^121 - 13*q^169 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := With[ {m = Sqrt[8 n + 1]}, If[ IntegerQ@m, m (-1)^(n + Quotient[m, 6]), 0] If[ Divisible[ m, 3], 2, 1]]; (* Michael Somos, Jun 19 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x]^3 - 9 x QPochhammer[ -x^9]^3, {x, 0, n}]; (* Michael Somos, Jun 19 2015 *)
  • PARI
    {a(n) = my(m); if( issquare(8*n + 1, &m), (-1)^(m \ 6 + n) * m * ((m%3 == 0) + 1), 0)};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(-x + A)^3 - 9 * x * eta(-x^9 + A)^3, n))};

Formula

Expansion of f(x^3) * a(-x) in powers of x where f() is a Ramanujan theta function and a() is a cubic AGM theta function.
a(n) = b(8*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = - (1 + (-1)^e) * 3^(e/2), b(p^e) = (1 + (-1)^e)/2 * p^(e/2) if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e)/2 * (-p)^(e/2) if p == 5, 7 (mod 8). - Michael Somos, Jun 19 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = -576 (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A133079.
a(3*n + 2) = a(5*n + 2) = a(5*n + 4) = a(9*n + 4) = a(9*n + 7) = 0. a(3*n) = A133079(n). a(9*n + 1) = -6 * A133089(n). a(25*n + 3) = -5 * a(n). a(n) = (-1)^n * A202394(n).
Showing 1-2 of 2 results.