cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A010816 Expansion of Product_{k>=1} (1 - x^k)^3.

Original entry on oeis.org

1, -3, 0, 5, 0, 0, -7, 0, 0, 0, 9, 0, 0, 0, 0, -11, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, -15, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, 0, -19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -27, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also, number of different partitions of n into parts of -3 different kinds (based upon formal analogy). - Michele Dondi (blazar(AT)lcm.mi.infn.it), Jun 29 2004

Examples

			G.f. = 1 - 3*x + 5*x^3 - 7*x^6 + 9*x^10 - 11*x^15 + 13*x^21 - 15*x^28 + ...
G.f. for b(n): = q - 3*q^9 + 5*q^25 - 7*q^49 + 9*q^81 - 11*q^121 + 13*q^169 + ...
		

References

  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 117, Problem 22.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.5.14).
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Clarendon Press, Oxford, 2003, p. 285, Theorem 357 (Jacobi).
  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.4, p. 410, Problem 23.
  • S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 267 MR0099904 (20 #6340)

Crossrefs

Programs

  • Julia
    # DedekindEta is defined in A000594.
    A010816List(len) = DedekindEta(len, 3)
    A010816List(39) |> println # Peter Luschny, Mar 10 2018
    
  • Maple
    S:= series(mul(1-x^k,k=1..200)^3,x,201):
    seq(coeff(S,x,j),j=0..200); # Robert Israel, Feb 01 2018
    A010816 := n -> if issqr(8*n+1) then isqrt(8*n+1); (-1)^iquo(%, 2) * % else 0 fi:
    seq(A010816(n), n=0..98); # Peter Luschny, Apr 17 2022
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticThetaPrime[ 1, 0, x^(1/2)] / (2 x^(1/8)), {x, 0, n}]; (* Michael Somos, Oct 22 2011 *)
    a[ n_] := With[ {m = 8 n + 1}, If[m > 0 && OddQ[ Length @ Divisors @ m], Sqrt[m] KroneckerSymbol[-4, Sqrt[m]], 0]];  (* Michael Somos, Aug 26 2015 *)
    CoefficientList[QPochhammer[q]^3 + O[q]^100, q] (* Jean-François Alcover, Nov 25 2015 *)
    a[ n_] := With[ {x = Sqrt[8 n + 1]}, If[ IntegerQ[ x], (-1)^Quotient[ x, 2] x, 0]]; (* Michael Somos, Feb 01 2018 *)
    a[ n_] := If[ n < 1, Boole[ n == 0], Times @@ (If[ # == 2 || OddQ[ #2], 0, (KroneckerSymbol[ -4, #] #)^(#2/2)] & @@@ FactorInteger[ 8 n + 1])]; (* Michael Somos, Feb 01 2018 *)
  • PARI
    {a(n) = my(x); if( n<0, 0, if( issquare( 8*n + 1, &x), (-1)^(x\2) * x))}; /* Michael Somos, Nov 08 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3, n))};
    
  • Python
    from sympy import integer_nthroot
    def A010816(n):
        a, b = integer_nthroot((n<<3)+1,2)
        return (-a if a&2 else a) if b else 0 # Chai Wah Wu, Nov 02 2024

Formula

G.f.: Product_{k>=1} (1-x^k)^3 = Sum_{n>=0} (-1)^n*(2*n+1)*x^(n*(n+1)/2) (Jacobi).
Given g.f. A(x), then q * A(q^8) = eta(q^8)^3 = theta_2(q^4)*theta_3*(q^4)*theta_4(q^4) / 2 = theta_1'(q^4) / (2*Pi). - Michael Somos, Nov 08 2005
Given g.f. A(x), then x*A(x)^8 is g.f. for A000594.
a(n) = b(8*n + 1) where b() is multiplicative with b(p^e) = 0 if e odd, b(2^e) = 0^e, b(p^e) = p^(e/2) if p == 1 (mod 4), b(p^e) = (-p)^(e/2) if p == 3 (mod 4). - Michael Somos, Aug 22 2006
Expansion of f(-x)^3 in powers of x where f() is a Ramanujan theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 2^(9/2) (t/i)^(3/2) f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 09 2007
a(3*n + 2) = a(5*n + 2) = a(5*n + 4) = a(9*n + 4) = a(9*n + 7) = 0. a(9*n + 1) = -3 * a(n). a(25*n + 3) = 5 * a(n). - Michael Somos, Sep 09 2007
a(3*n) = A116916(n).
a(n) = (t*(t+1)-2*n-1)*(t-r)*(-1)^(t+1), where t = floor(sqrt(2*(n+1))+1/2) and r = floor(sqrt(2*n)+1/2). - Mikael Aaltonen, Jan 17 2015
a(0) = 1, a(n) = -(3/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(-3*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
G.f.: Product_{n >= 1} (1 - q^(4*n))^3 * (1 + q^(4*n-1))^(-3) * (1 - q^(4*n-2))^6 * (1 + q^(4*n-3))^(-3). - Peter Bala, Jun 07 2025

A133079 Expansion of f(x)^3 - 3 * x * f(x^9)^3 in powers of x^3 where f() is a Ramanujan theta function.

Original entry on oeis.org

1, -5, -7, 0, 0, 11, 0, -13, 0, 0, 0, 0, 17, 0, 0, 19, 0, 0, 0, 0, 0, 0, -23, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, -29, 0, 0, 0, 0, -31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 0, 0, 0, 0, 0, -37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 41, 0, 0, 0, 0, 0, 0, 43, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -47, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Sep 08 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
There is a plus sign on the left side and the first and third plus signs on the right side which should be minuses in Ramanujan's equation.

Examples

			G.f. = 1 - 5*x - 7*x^2 + 11*x^5 - 13*x^7 + 17*x^12 + 19*x^15 - 23*x^22 + ...
G.f. = q - 5*q^25 - 7*q^49 + 11*q^121 - 13*q^169 + 17*q^289 + 19*q^361 - ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 357, Entry 5, Eq. (5.1)
  • S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 266.

Crossrefs

Programs

  • Mathematica
    a[ n_] := With[ {m = Sqrt[24 n + 1]}, If[ IntegerQ@m, m (-1)^Boole[Mod[m, 8] > 4], 0]]; (* Michael Somos, Jun 19 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x]^3 - 3 x QPochhammer[ -x^9]^3, {x, 0, 3 n}]; (* Michael Somos, Jun 19 2015 *)
  • PARI
    {a(n) = if( issquare( 24*n + 1, &n), n * (-1) ^ (n%8 > 4), 0)};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 24*n + 1; A = factor(n); prod(k = 1, matsize(A) [1], [p, e] = A[k,]; if( p < 5, 0, p *= kronecker( -2, p); if( e%2, 0, p^(e/2) ))))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, n *= 3; A = x * O(x^n); polcoeff( eta(-x + A)^3 - 3 * x * eta(-x^9 + A)^3, n))};

Formula

Expansion of f(x) * a(-x) in powers of x where f() is a Ramanujan theta function and a() is a cubic AGM theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = -192 (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A204850.
a(n) = b(24*n + 1) where b(n) is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * p^(e/2) if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e)/2 * (-p)^(e/2) if p == 5, 7 (mod 8).
G.f.: Sum_{k in Z} Kronecker( 2, 2*k + 1) * (6*k + 1) * x^(k * (3*k + 1)/2).
a(5*n + 3) = a(5*n + 4) = 0. a(25*n + 1) = -5 * a(n). a(n) = (-1)^n * A116916(n).
a(n) = A133089(3*n) = A204850(3*n). - Michael Somos, Jun 19 2015

A282941 a(n) = A000730(7*n).

Original entry on oeis.org

1, 41, -176, 98, 322, -181, -140, -489, 112, 889, 14, -560, 125, 154, 756, -1317, -1778, 1554, -1218, 2688, 1764, -980, 71, -1575, 14, -1638, -419, 56, -1988, -2716, 6223, 6860, 1302, -700, -3416, -4733, -2548, -4725, 3836, 1106, 2631, 5096, -5656, 2660, -7875
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2017

Keywords

Examples

			G.f.: 1 + 41*q - 176*q^2 + 98*q^3 + 322*q^4 - 181*q^5 - 140*q^6 - 489*q^7 + ...
		

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 191.

Crossrefs

Formula

G.f.: Product_{n>=1} (1 - q^n)^8/(1 - q^(7*n)) + 49*q*(Product_{n>=1} (1 - q^n)^4*(1 - q^(7*n))^3).
a(n) = (-1)^j mod 7 if n = j*(3*j - 1)/2 for all j in Z; otherwise a(n) = 0 mod 7.
a(n) = A282942(n) mod 49.

A202394 Expansion of f(-x)^3 + 9 * x * f(-x^9)^3 in powers of x where f() is a Ramanujan theta function.

Original entry on oeis.org

1, 6, 0, 5, 0, 0, -7, 0, 0, 0, -18, 0, 0, 0, 0, -11, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, 0, -19, 0, 0, 0, 0, 0, 0, 0, 0, 0, -42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Dec 18 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 6*x + 5*x^3 - 7*x^6 - 18*x^10 - 11*x^15 + 13*x^21 + 30*x^28 + ...
G.f. = q + 6*q^9 + 5*q^25 - 7*q^49 - 18*q^81 - 11*q^121 + 13*q^169 + 30*q^225 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^3 + 9 x QPochhammer[ x^9]^3, {x, 0, n}]; (* Michael Somos, May 26 2014 *)
  • PARI
    {a(n) = local(m); if( issquare(8*n + 1, &m), (-1)^(m \ 6) * m * ((m%3 == 0) + 1), 0)};
    
  • PARI
    {a(n) = local(A); if( n<0, 0,  A = x * O(x^n); polcoeff( eta(x + A)^3 + 9 * x * eta(x^9 + A)^3, n))};

Formula

Expansion of f(-x^3) * a(x) in powers of x where f() is a Ramanujan theta function and a() is a cubic AGM theta function.
Expansion of q^(-1/8) * (eta(q)^3 + 9 * eta(q^9)^3) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (576 t)) = 41472^(1/2) (t / i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A116916.
G.f.: Sum_{k} -(-1)^k * (6*k - 1) * x^(3*k*(3*k - 1)/2) + Sum_{k>0} -(-1)^k * 6 * (2*k - 1) * x^(9*k*(k - 1)/2 + 1).
a(3*n + 2) = a(5*n + 2) = a(5*n + 4) = a(9*n + 4) = a(9*n + 7) = 0. a(3*n) = A116916(n). a(9*n + 1) = 6 * A010816(n). a(25*n + 3) = 5 * a(n).
a(n) nonzero if and only if n is a triangular number.

A134756 Coefficients of a q-series of Zagier related to the Dedekind eta function.

Original entry on oeis.org

1, -5, -7, 0, 0, 11, 0, 13, 0, 0, 0, 0, -17, 0, 0, -19, 0, 0, 0, 0, 0, 0, 23, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, -29, 0, 0, 0, 0, -31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 0, 0, 0, 0, 0, 37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -41, 0, 0, 0, 0, 0, 0, -43, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 47, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Nov 08 2007

Keywords

Comments

Obtained by formally "differentiating the Dedekind eta-function half a time".

Examples

			G.f. = 1 - 5*x - 7*x^2 + 11*x^5 + 13*x^7 - 17*x^12 - 19*x^15 + 23*x^22 + ...
G.f. = q - 5*q^25 - 7*q^49 + 11*q^121 + 13*q^169 - 17*q^289 - 19*q^361 + ...
		

Crossrefs

Cf. A010815.
Apart from signs, same as A080332, A116916 and A133079. - N. J. A. Sloane, Nov 11 2007

Programs

  • Mathematica
    a[ n_] := With[ {m = Sqrt[24 n + 1]}, If[ IntegerQ @ m, m KroneckerSymbol[ 12, m], 0]]; (* Michael Somos, Oct 15 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], Times @@ (If[ # < 5, 0, (1 - Mod[#2, 2]) (# KroneckerSymbol[ 12, #])^(#2/2)] & @@@ FactorInteger[ 24 n + 1])]; (* Michael Somos, Oct 15 2015 *)
    s = QPochhammer[q] + O[q]^100; A010815 = CoefficientList[s, q]; nn = Range[0, Length[A010815]-1]; A134756 = Sqrt[24*nn+1]*A010815 (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    {a(n) = if( issquare( 24*n+1, &n), n * kronecker( 12, n), 0)};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(24*n+1); prod(k = 1, matsize(A)[1], [p, e] = A[k, ]; if( (p<5) || (e%2), 0, (kronecker( 12, p) * p)^(e\2))))};

Formula

a(n) = b(24*n + 1) where b() is multiplicative and b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * p^(e/2) if p == 1, 11 (mod 12), b(p^e) = (1 + (-1)^e)/2 * (-p)^(e/2) if p == 5, 7 (mod 12).
G.f.: Sum_{k>0} Kronecker(12, k) * k * x^((k^2 - 1) / 24).
a(n) = sqrt(24*n + 1) * A010815(n).

A178902 Expansion of q^(-1/24) * eta(q^2)^13 / (eta(q)^5 * eta(q^4)^5) in powers of q.

Original entry on oeis.org

1, 5, 7, 0, 0, 11, 0, -13, 0, 0, 0, 0, -17, 0, 0, -19, 0, 0, 0, 0, 0, 0, -23, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 29, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 0, 0, 0, 0, 0, -37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -41, 0, 0, 0, 0, 0, 0, -43, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -47, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jun 21 2010

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 5*x + 7*x^2 + 11*x^5 - 13*x^7 - 17*x^12 - 19*x^15 - 23*x^22 + ...
G.f. = q + 5*q^25 + 7*q^49 + 11*q^121 - 13*q^169 - 17*q^289 - 19*q^361 + ...
		

Crossrefs

Apart from signs, same as A080332, A116916, A133079 and A134756.

Programs

  • Mathematica
    A178902[n_] := SeriesCoefficient[(QPochhammer[-q, -q]/QPochhammer[q, -q])^3/QPochhammer[-q, q^2], {q, 0, n}]; Table[A178902[n], {n, 0, 50}] (* G. C. Greubel, Aug 17 2017 *)
    a[ n_] := With[ {m = Sqrt[24 n + 1]}, If[ IntegerQ@m, m KroneckerSymbol[ -6, m], 0]]; (* Michael Somos, Apr 27 2018 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^13 / (QPochhammer[ x] QPochhammer[ x^4])^5, {x, 0, n}]; (* Michael Somos, Apr 27 2018 *)
  • PARI
    {a(n) = if( issquare( 24*n + 1, &n), n * kronecker( -6, n), 0)};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(24*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( (p<5) || (e%2), 0, if( p%24<12, p, -p)^(e\2))))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^13 / (eta(x + A)^5 * eta(x^4 + A)^5), n))};

Formula

Expansion of f(q) * phi(q)^2 = f(q)^3 * chi(q)^2 = phi(q)^3 / chi(q) in powers of q where f(), phi(), chi() are Ramanujan theta functions.
Euler transform of period 4 sequence [5, -8, 5, -3, ...].
a(n) = b(24*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * p^(e/2) if p == 1, 5, 7, 11 (mod 24), b(p^e) = (1 + (-1)^e)/2 * (-p)^(e/2) if p == 13, 17, 19, 23 (mod 24).
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = 48^(3/2) (t/i)^(3/2) f(t) where q = exp(2 Pi i t).
G.f.: Product_{k>0} (1 - x^(2*k))^3 * (1 + x^(2*k - 1))^5 = Sum_{k>0} Kronecker( -6, k) * k * x^((k^2 - 1) / 24) = Sum_{k in Z} (6*k + 1) * (-1)^floor(k/2) * x^(k * (3*k + 1) / 2).
a(n) = (-1)^n * A080332(n).
Showing 1-6 of 6 results.