cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202472 Goldbach's Problem extended to subtraction: number of decompositions of 2n into unordered differences of two primes, p, q, where p < 2n < q.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 2, 3, 3, 3, 2, 6, 4, 3, 6, 3, 4, 6, 4, 5, 8, 4, 4, 7, 6, 4, 9, 8, 4, 11, 5, 5, 11, 6, 8, 9, 4, 7, 11, 7, 4, 13, 7, 5, 15, 7, 8, 13, 8, 9, 11, 7, 7, 13, 10, 5, 13, 7, 7, 19, 9, 8, 17, 9, 10, 16, 9, 9, 15, 12, 7, 19, 9, 7, 19, 9, 12, 17, 8, 14
Offset: 1

Views

Author

James D. Klein, Dec 19 2011

Keywords

Crossrefs

Extension of A002375.
Bisection of A092953.

Programs

  • Mathematica
    Table[Length[Select[Prime[Range[PrimePi[2*n]]], PrimeQ[2*n + #] &]], {n, 100}] (* T. D. Noe, Apr 16 2013 *)
  • PARI
    a(n)=my(s);forprime(p=2,2*n,s+=isprime(2*n+p));s \\ Charles R Greathouse IV, Dec 19 2011
    (C++)
    #include 
    using namespace std;
    int main()
    { int p[25] = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97};
      int count, istart = 2;
      for(int n=1; n<=25; n++)
      {
          if(2*n>p[istart]) istart++;
          count = 0;
          for(int j=1; p[j]<2*n; j++)
            for(int i=istart; p[i]-p[j]<=2*n; i++)
              if(p[i]-p[j]==2*n) count++;
          cout << n << ". " << count << endl;
      }
        return 0;
    } // code for the first 25 integers, James D. Klein, Dec 21 2011

Formula

a(n) = A092953(2*n). - Bill McEachen, May 24 2024