A202495 Decimal expansion of x satisfying x = e^(-2*Pi*x).
2, 3, 2, 3, 1, 3, 3, 8, 2, 5, 5, 5, 1, 8, 1, 6, 2, 2, 8, 9, 5, 5, 2, 5, 4, 6, 6, 8, 0, 9, 0, 5, 4, 6, 9, 9, 6, 0, 0, 6, 5, 5, 4, 0, 3, 7, 2, 9, 1, 0, 6, 2, 4, 0, 8, 2, 6, 5, 4, 5, 6, 7, 1, 7, 8, 1, 0, 2, 2, 7, 8, 1, 9, 9, 3, 8, 2, 6, 8, 1, 7, 5, 3, 4, 2, 0, 8, 9, 8, 2, 1, 8, 5, 6, 9, 6, 8, 3, 6
Offset: 0
Examples
x=0.232313382555181622895525466809054699600655...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
evalf(LambertW(2*Pi)/(2*Pi), 145); # Alois P. Heinz, Feb 26 2020
-
Mathematica
u = -2*Pi; v = 0; f[x_] := x; g[x_] := E^(u*x + v) Plot[{f[x], g[x]}, {x, 0, .5}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .2, .3}, WorkingPrecision -> 110] RealDigits[r] (* A202357 *) RealDigits[ ProductLog[2*Pi]/(2*Pi), 10, 99] // First (* Jean-François Alcover, Feb 19 2013 *)
Formula
Equals LambertW(2*Pi)/(2*Pi). - Alois P. Heinz, Feb 26 2020
Comments