cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202495 Decimal expansion of x satisfying x = e^(-2*Pi*x).

Original entry on oeis.org

2, 3, 2, 3, 1, 3, 3, 8, 2, 5, 5, 5, 1, 8, 1, 6, 2, 2, 8, 9, 5, 5, 2, 5, 4, 6, 6, 8, 0, 9, 0, 5, 4, 6, 9, 9, 6, 0, 0, 6, 5, 5, 4, 0, 3, 7, 2, 9, 1, 0, 6, 2, 4, 0, 8, 2, 6, 5, 4, 5, 6, 7, 1, 7, 8, 1, 0, 2, 2, 7, 8, 1, 9, 9, 3, 8, 2, 6, 8, 1, 7, 5, 3, 4, 2, 0, 8, 9, 8, 2, 1, 8, 5, 6, 9, 6, 8, 3, 6
Offset: 0

Views

Author

Clark Kimberling, Dec 20 2011

Keywords

Comments

See A202348 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=0.232313382555181622895525466809054699600655...
		

Crossrefs

Programs

  • Maple
    evalf(LambertW(2*Pi)/(2*Pi), 145);  # Alois P. Heinz, Feb 26 2020
  • Mathematica
    u = -2*Pi; v = 0;
    f[x_] := x; g[x_] := E^(u*x + v)
    Plot[{f[x], g[x]}, {x, 0, .5}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .2, .3}, WorkingPrecision -> 110]
    RealDigits[r]    (* A202357 *)
    RealDigits[ ProductLog[2*Pi]/(2*Pi), 10, 99] // First (* Jean-François Alcover, Feb 19 2013 *)

Formula

Equals LambertW(2*Pi)/(2*Pi). - Alois P. Heinz, Feb 26 2020