cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A144691 Limit of the coefficient of x^(2^m+n) in B(x)^(n+1)/(n+1) as m grows, where B(x) = Sum_{k>=0} x^(2^k).

Original entry on oeis.org

1, 1, 2, 4, 26, 106, 816, 4292, 90162, 715138, 10275886, 87498566, 1944309280, 20988667064, 380829128200, 4301687654136, 219999839271970, 3375111608092354, 90438559754079802, 1341646116200287978, 52342848299405537114, 921821277222438350170
Offset: 0

Views

Author

Paul D. Hanna, Oct 10 2008

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 26*x^4 + 106*x^5 + 816*x^6 +...
A(x/G(x)) = G(x) = x/Series_Reversion[x*A(x)], where
G(x) = 1 + x + x^2 + 17*x^4 + 408*x^6 + 69473*x^8 + 6018928*x^10 +...
and G(x) appears to continue with only even powers of x (cf. A144692).
The inverse binomial transform forms the g.f. of A202582:
A(x/(1+x))/(1+x) = 1 + x^2 + 19*x^4 + 515*x^6 + 74383*x^8 + 6816465*x^10 +...+ A202582(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    { a(n) = local(m=n+log(n+.5)\log(2), B=sum(k=0,m,x^(2^k))); if(n<0, 0, polcoeff((B+O(x^(2^m+n+1)))^(n+1)/(n+1),2^m+n)) }

Formula

a(n) = A144690(n)/(n+1).
G.f. A(x) satisfies: A(x/(1+x))/(1+x) is an even function; i.e., the inverse binomial transform yields A202582.

Extensions

a(14), a(15) corrected and a(16)-a(23) added by Max Alekseyev, May 03 2011
a(24)-a(27) in b-file from Max Alekseyev, Dec 19 2011

A277043 Inverse binomial transform of A277041.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 30, 0, 0, 10921, 0, 0, 6308995, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Sep 25 2016

Keywords

Examples

			G.f.: A(x) = 1 + x^3 + 30*x^6 + 10921*x^9 + 6308995*x^12 +...
such that the binomial transform forms the g.f. of A277041:
A(x/(1-x))/(1-x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 11*x^5 + 51*x^6 + 246*x^7 + 897*x^8 + 13526*x^9 + 115631*x^10 + 614681*x^11 + 8739556*x^12 + 89877217*x^13 + 596072842*x^14 +...+ A277041(n)*x^n +...
Also, A(x/(G(x) - x)) = G(x) - x where G(x) = g.f. of A277042 where
G(x) = 1 + x + x^3 + 27*x^6 + 10666*x^9 + 6174792*x^12 +...+ A277042(n)*x^n +...
		

Crossrefs

Formula

Let G(x) be the g.f. of A277042, then g.f. A(x) satisfies:
(1) G(x*A(x)) = (1+x)*A(x).
(2) A(x/(G(x) - x)) = G(x) - x.
(3) A(x) = (1/x)*Series_Reversion(x/(G(x) - x)).
(4) G(x) = x + x/Series_Reversion(x*A(x)).
Showing 1-2 of 2 results.