cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202606 a(n) = ceiling(((10^n - 1)^2/9 + 10^n)/18).

Original entry on oeis.org

1, 2, 67, 6217, 617717, 61732717, 6172882717, 617284382717, 61728399382717, 6172839549382717, 617283951049382717, 61728395066049382717, 6172839506216049382717, 617283950617716049382717, 61728395061732716049382717, 6172839506172882716049382717
Offset: 0

Views

Author

Arkadiusz Wesolowski, Dec 21 2011

Keywords

Comments

a(n) are distinct primes for n = 1 to 8.

Examples

			a(2) = 67 because (99^2/9 + 100)/18 = 66.05555....
		

Crossrefs

Programs

  • Magma
    [ ((10^n-1)^2/9+10^n-1)/18+1 : n in [0..15]];
    
  • Maple
    seq(((10^n-1)^2/9+10^n-1)/18+1, n=0..15);
  • Mathematica
    Table[a = (10^n - 1)/18; 2*a^2 + a + 1, {n, 0, 15}]
    LinearRecurrence[{111,-1110,1000},{1,2,67},20] (* Harvey P. Dale, Jul 07 2017 *)
  • PARI
    for(n=0, 15, print1(((10^n-1)^2/9+10^n-1)/18+1, ", "))

Formula

a(n) = ceiling(((10^n - 1)^2/9 + 10^n)/18).
a(n) = (10^n - 1)*((10^n - 1)/9 + 1)/18 + 1.
G.f.: (1 - 109*x + 955*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)).