cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202623 Decimal expansion of (1/3)! = Gamma(4/3).

Original entry on oeis.org

8, 9, 2, 9, 7, 9, 5, 1, 1, 5, 6, 9, 2, 4, 9, 2, 1, 1, 2, 1, 8, 5, 6, 4, 3, 1, 3, 6, 5, 8, 2, 2, 5, 8, 8, 1, 3, 7, 6, 2, 2, 9, 7, 9, 2, 6, 5, 2, 4, 3, 3, 7, 0, 0, 3, 1, 6, 8, 0, 9, 4, 4, 2, 5, 3, 0, 1, 3, 9, 2, 0, 3, 3, 8, 9, 2, 4, 7, 9, 3, 9, 8, 4, 6, 9, 9, 4, 2, 9, 6, 3, 4, 7, 0, 6, 2, 9, 2, 9, 8, 0, 6, 3, 8, 6, 3, 4, 9, 7, 3, 3, 3, 5, 7, 4, 2, 1, 1, 1, 1, 9, 0, 6, 3, 6, 1, 5, 2, 3, 1, 6, 8, 1, 5, 7, 4, 1, 9, 9, 9, 2, 5, 7, 1, 1, 2, 2, 5, 6, 9
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			0.89297951156924921121856431365822588137622979265243370031680...
		

Crossrefs

Programs

  • Macsyma
    4^(8/9)*%PI^(2/3)*THETA[3](0,%E^-(16*%PI/SQRT(3)))^(2/3)/(3^(1/4)*(2^(7/16)*(SQRT(2)-1)^(1/4)/((SQRT(3)-1)^(1/8)*(SQRT(3)-SQRT(2))^(1/4))+1/(2^(1/4)*SQRT(SQRT(3)+1))+1)^(2/3))
    /* This is exact, but degrades to 50+ digits if you replace
    THETA[3](0,%E^-(16*%PI/SQRT(3)))
    by 1+2*%E^-(16*%PI/SQRT(3)) */
    /* R. W. Gosper, Posting to Math Fun Mailing List, Dec 27 2011 */
  • Maple
    evalf(GAMMA(4/3)) ;
  • Mathematica
    RealDigits[(1/3)!,10,150][[1]] (* or *) RealDigits[Gamma[4/3],10,150] [[1]] (* Harvey P. Dale, Sep 03 2016 *)

Formula

A formula from R. W. Gosper, Posting to Math Fun Mailing List, Dec 27 2011:
Equals (1/3) * (2*2^(7/9)*((Pi*EllipticTheta[3, 0, E^(-((16*Pi)/Sqrt[3]))])/ (1 + 1/(2^(1/4)*Sqrt[1 + Sqrt[3]]) + (2^(7/16)*((-1 + Sqrt[2])/(-Sqrt[2] + Sqrt[3]))^(1/4))/(-1+Sqrt[3])^(1/8)))^(2/3))/3^(1/4).
Equals Integral_{0..oo} exp(-x^3) dx. [Jean-François Alcover, Mar 29 2013]
Equals A073005/3. - R. J. Mathar, Jan 15 2021
Equals 3*Integral_{-1/e..0} (-LambertW(-1,x))^(1/3)-(-LambertW(x))^(1/3) dx. - Gleb Koloskov, Jun 07 2021

Extensions

Corrected and extended by Harvey P. Dale, Sep 03 2016