cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202679 Numbers that are sums of two coprime positive cubes.

Original entry on oeis.org

2, 9, 28, 35, 65, 91, 126, 133, 152, 189, 217, 341, 344, 351, 370, 407, 468, 513, 539, 559, 637, 730, 737, 793, 854, 855, 1001, 1027, 1072, 1241, 1332, 1339, 1343, 1358, 1395, 1456, 1547, 1674, 1729, 1843, 1853, 2060, 2071, 2198, 2205, 2224, 2261, 2322, 2331, 2413
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 06 2012

Keywords

Comments

Not a subsequence of A020898: non-cubefree members of this sequence include 152, 189, 344, 351, 513, 1072. - Robert Israel, Mar 16 2016

Examples

			28 is in the sequence since 1^3 + 3^3 = 28 and (1, 3) = 1.
		

Crossrefs

Subsequence of A003325.

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    S:= {2,seq(seq(x^3 + y^3, y = select(t -> igcd(t,x)=1, [$x+1 .. floor((N - x^3)^(1/3))])), x = 1 .. floor((N/2)^(1/3)))}:
    sort(convert(S,list)); # Robert Israel, Mar 15 2016
  • Mathematica
    nn = 2500; Union[Flatten[Table[If[CoprimeQ[x, y] == True, x^3 + y^3, {}], {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}]]]
    Select[Range@ 2500, Length[PowersRepresentations[#, 2, 3] /. {{0, } -> Nothing, {a, b_} /; ! CoprimeQ[a, b] -> Nothing}] > 0 &] (* Michael De Vlieger, Mar 15 2016 *)
  • PARI
    is(n)=for(k=1,(n\2+.5)^(1/3),if(gcd(k,n)==1&&ispower(n-k^3, 3), return(1)));0 \\ Charles R Greathouse IV, Apr 13 2012
    
  • PARI
    list(lim)=my(v=List()); forstep(x=1, lim^(1/3), 2, forstep(y=2,(lim-x^3+.5)^(1/3), 2, if(gcd(x,y)==1, listput(v,x^3+y^3))); forstep(y=1, min((lim-x^3+.5)^(1/3),x), 2, if(gcd(x,y)==1, listput(v,x^3+y^3)))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Dec 05 2012

Formula

Erdős & Mahler shows that a(n) < kn^(3/2) for some k. Erdős later gives an elementary proof. - Charles R Greathouse IV, Dec 05 2012