cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003325 Numbers that are the sum of 2 positive cubes.

Original entry on oeis.org

2, 9, 16, 28, 35, 54, 65, 72, 91, 126, 128, 133, 152, 189, 217, 224, 243, 250, 280, 341, 344, 351, 370, 407, 432, 468, 513, 520, 539, 559, 576, 637, 686, 728, 730, 737, 756, 793, 854, 855, 945, 1001, 1008, 1024, 1027, 1064, 1072, 1125, 1216, 1241, 1332, 1339, 1343
Offset: 1

Views

Author

Keywords

Comments

It is conjectured that this sequence and A052276 have infinitely many numbers in common, although only one example (128) is known. [Any further examples are greater than 5 million. - Charles R Greathouse IV, Apr 12 2020] [Any further example is greater than 10^12. - M. F. Hasler, Jan 10 2021]
A113958 is a subsequence; if m is a term then m+k^3 is a term of A003072 for all k > 0. - Reinhard Zumkeller, Jun 03 2006
From James R. Buddenhagen, Oct 16 2008: (Start)
(i) N and N+1 are both the sum of two positive cubes if N=2*(2*n^2 + 4*n + 1)*(4*n^4 + 16*n^3 + 23*n^2 + 14*n + 4), n=1,2,....
(ii) For n >= 2, let N = 16*n^6 - 12*n^4 + 6*n^2 - 2, so N+1 = 16*n^6 - 12*n^4 + 6*n^2 - 1.
Then the identities 16*n^6 - 12*n^4 + 6*n^2 - 2 = (2*n^2 - n - 1)^3 + (2*n^2 + n - 1)^3 16*n^6 - 12*n^4 + 6*n^2 - 1 = (2*n^2)^3 + (2*n^2 - 1)^3 show that N, N+1 are in the sequence. (End)
If n is a term then n*m^3 (m >= 2) is also a term, e.g., 2m^3, 9m^3, 28m^3, and 35m^3 are all terms of the sequence. "Primitive" terms (not of the form n*m^3 with n = some previous term of the sequence and m >= 2) are 2, 9, 28, 35, 65, 91, 126, etc. - Zak Seidov, Oct 12 2011
This is an infinite sequence in which the first term is prime but thereafter all terms are composite. - Ant King, May 09 2013
By Fermat's Last Theorem (the special case for exponent 3, proved by Euler, is sufficient), this sequence contains no cubes. - Charles R Greathouse IV, Apr 03 2021

References

  • C. G. J. Jacobi, Gesammelte Werke, vol. 6, 1969, Chelsea, NY, p. 354.

Crossrefs

Subsequence of A004999 and hence of A045980; supersequence of A202679.
Cf. A024670 (2 distinct cubes), A003072, A001235, A011541, A003826, A010057, A000578, A027750, A010052, A085323 (n such that a(n+1)=a(n)+1).

Programs

  • Haskell
    a003325 n = a003325_list !! (n-1)
    a003325_list = filter c2 [1..] where
       c2 x = any (== 1) $ map (a010057 . fromInteger) $
                           takeWhile (> 0) $ map (x -) $ tail a000578_list
    -- Reinhard Zumkeller, Mar 24 2012
    
  • Mathematica
    nn = 2*20^3; Union[Flatten[Table[x^3 + y^3, {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}]]] (* T. D. Noe, Oct 12 2011 *)
    With[{upto=2000},Select[Total/@Tuples[Range[Ceiling[Surd[upto,3]]]^3,2],#<=upto&]]//Union (* Harvey P. Dale, Jun 11 2016 *)
  • PARI
    cubes=sum(n=1, 11, x^(n^3), O(x^1400)); v = select(x->x, Vec(cubes^2), 1); vector(#v, k, v[k]+1) \\ edited by Michel Marcus, May 08 2017
    
  • PARI
    isA003325(n) = for(k=1,sqrtnint(n\2,3), ispower(n-k^3,3) && return(1)) \\ M. F. Hasler, Oct 17 2008, improved upon suggestion of Altug Alkan and Michel Marcus, Feb 16 2016
    
  • PARI
    T=thueinit('z^3+1); is(n)=#select(v->min(v[1],v[2])>0, thue(T,n))>0 \\ Charles R Greathouse IV, Nov 29 2014
    
  • PARI
    list(lim)=my(v=List()); lim\=1; for(x=1,sqrtnint(lim-1,3), my(x3=x^3); for(y=1,min(sqrtnint(lim-x3,3),x), listput(v, x3+y^3))); Set(v) \\ Charles R Greathouse IV, Jan 11 2022
    
  • Python
    from sympy import integer_nthroot
    def aupto(lim):
      cubes = [i*i*i for i in range(1, integer_nthroot(lim-1, 3)[0] + 1)]
      sum_cubes = sorted([a+b for i, a in enumerate(cubes) for b in cubes[i:]])
      return [s for s in sum_cubes if s <= lim]
    print(aupto(1343)) # Michael S. Branicky, Feb 09 2021

Extensions

Error in formula line corrected by Zak Seidov, Jul 23 2009

A020898 Positive cubefree integers n such that the Diophantine equation X^3 + Y^3 = n*Z^3 has solutions.

Original entry on oeis.org

2, 6, 7, 9, 12, 13, 15, 17, 19, 20, 22, 26, 28, 30, 31, 33, 34, 35, 37, 42, 43, 49, 50, 51, 53, 58, 61, 62, 63, 65, 67, 68, 69, 70, 71, 75, 78, 79, 84, 85, 86, 87, 89, 90, 91, 92, 94, 97, 98, 103, 105, 106, 107, 110, 114, 115, 117, 123, 124, 126, 127, 130
Offset: 1

Views

Author

Keywords

Comments

These numbers are the cubefree sums of two nonzero rational cubes.
This sequence does not contain A202679, which has members that are not cubefree. - Robert Israel, Mar 16 2016
Notice that 34^3 + 74^3 = 48*21^3 = 6*42^3 because 48 = 6*2^3 is not cubefree, but now 17^3 + 37^3 = 6*21^3 and 6 is already listed in the sequence. - Michael Somos, Mar 13 2023

Examples

			37^3 + 17^3 = 6*21^3 is the smallest positive solution for n = 6 (found by Lagrange).
5^3 + 4^3 = 7*3^3 is the smallest positive solution for n = 7.
		

References

  • B. N. Delone and D. K. Faddeev, The Theory of Irrationalities of the Third Degree, Amer. Math. Soc., 1964.
  • L. E. Dickson, History of The Theory of Numbers, Vol. 2, Chap. XXI, Chelsea NY 1966.
  • L. J. Mordell, Diophantine Equations, Academic Press, Chap. 15.

Crossrefs

Programs

  • Mathematica
    (* A naive program with a few pre-computed terms *) nmax = 130; xmax = 2000; CubeFreePart[n_] := Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 3]} & /@ FactorInteger[n]); nn = Reap[ Do[ n = CubeFreePart[ x*y*(x+y) ]; If[ 1 < n <= nmax, Sow[n]], {x, 1, xmax}, {y, x, xmax}]][[2, 1]] // Union; A020898 = Union[nn, {17, 31, 53, 67, 71, 79, 89, 94, 97, 103, 107, 123}](* Jean-François Alcover, Mar 30 2012 *)

Extensions

Entry revised by N. J. A. Sloane, Aug 12 2004
Links updated by Max Alekseyev, Oct 17 2007 and Dec 12 2007

A228556 Sums of two coprime positive cubes that are also sums of two coprime positive fifth powers.

Original entry on oeis.org

2, 32769, 14348908, 14381675, 1073741825, 1088090731, 30517578126, 30517610893, 30531927032, 31591319949, 43977108474, 470184984577, 500702562701, 4747561509944, 4747561542711, 4747575858850, 4748635251767, 4778079088068, 5217746494519
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 25 2013

Keywords

Comments

Every term greater than 2 has at least one prime factor of the form 30*k + 1 and therefore is in A228541.

Examples

			14381675 is in the sequence since 32^3 + 243^3 = 8^5 + 27^5 = 14381675 and (32, 243) = (8, 27) = 1.
		

Crossrefs

Formula

A202679 INTERSECT A228542.

A295976 Number of nonnegative solutions to (x,y) = 1 and x^3 + y^3 = n.

Original entry on oeis.org

0, 2, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Seiichi Manyama, Dec 01 2017

Keywords

Comments

Number of ordered pairs of two nonnegative natural numbers that are coprime and whose cubes add to n. - Antti Karttunen, May 31 2021

Examples

			For 1729, a(1729) = 4, because the following four ordered pairs, (1,12),  (9,10),  (10,9) and (12,1) satisfy the condition, as 1^3 + 12^3 = 9^3 + 10^3 = 1729. - _Antti Karttunen_, May 31 2021
		

Crossrefs

Programs

  • PARI
    {a(n) = sum(i=0, n, sum(j=0, n, if((gcd(i, j)==1) && (i^3+j^3==n), 1, 0)))}
    
  • PARI
    A295976(n) = { my(s=0); for(i=0, oo, i3 = i^3; forstep(j=n-i3, 0, -1, if((i3+j^3==n) && gcd(i, j)==1, s++)); if(i3>n, return(s))); }; \\ Antti Karttunen, May 31 2021

A212286 Least k > 0 such that nk = x^3 + y^3 for nonnegative coprime x and y.

Original entry on oeis.org

1, 3, 7, 7, 21, 4, 19, 1, 37, 31, 39, 5, 2, 57, 67, 73, 7, 7, 103, 6, 133, 133, 147, 157, 18, 7, 1, 211, 237, 7, 259, 273, 301, 1, 13, 10, 4, 9, 403, 421, 3, 8, 487, 19, 541, 553, 579, 11, 637, 651, 9, 703, 31, 757, 26, 9, 853, 871, 903, 13, 27, 2, 1027, 1, 1101, 11, 1159, 1191
Offset: 2

Views

Author

Keywords

Comments

Broughan calls this eta(n) and proves that it exists for all n.

Examples

			4 is not the sum of two nonnegative cubes. 8 = 0^3 + 2^3, but 0 and 2 are not coprime. The least multiple of 4 that can be so represented is 28 = 1^3 + 3^3, so a(4) = 28/4.
		

Crossrefs

Programs

  • PARI
    sumOfTwoCubes(n)=my(k1=ceil((n-1/2)^(1/3)), k2=floor((4*n+1/2)^(1/3)), L); fordiv(n,d,if(d>=k1 && d<=k2 && denominator(L=(d^2-n/d)/3)==1 && issquare(d^2-4*L), return(1))); 0
    sumOfTwoRPCubes(n)=if(sumOfTwoCubes(n),if(vecmax(factor(n)[,2])<3,1,for(x=ceil((n\2)^(1/3)),(n+.5)^(1/3),if(gcd(n,x)==1&&ispower(n-x^3,3),return(1)));0),0)
    a(n)=forstep(k=n,2*n*(n^2+3),n,if(sumOfTwoRPCubes(k),return(k/n)))

Formula

a(n) <= 2n^2 + 6, a(a(n)) <= n.

A334964 Numbers that are the sum of three coprime positive cubes.

Original entry on oeis.org

3, 10, 17, 29, 36, 43, 55, 62, 66, 73, 92, 99, 118, 127, 129, 134, 141, 153, 155, 160, 179, 190, 197, 216, 218, 225, 244, 251, 253, 258, 277, 281, 307, 314, 342, 345, 349, 352, 359, 368, 371, 378, 397, 405, 408, 415, 433, 434, 466, 469, 471, 476, 495, 514, 521, 532, 540, 547, 557, 560, 566, 567
Offset: 1

Views

Author

Robert Israel, May 17 2020

Keywords

Comments

The greatest common divisor of the three cubes must be 1, but they need not be pairwise coprime.

Examples

			a(3)=17 is in the sequence because 17 = 1^3 + 2^3 + 2^3 with gcd(1,2,2)=1.
		

Crossrefs

Cf. A202679.

Programs

  • Maple
    N:= 1000: # for all terms <= N
    S:= {seq(seq(seq(x^3+y^3+z^3, z=select(t -> igcd(x,y,t)=1, [$y..floor((N-x^3-y^3)^(1/3))])), y=x..floor(((N-x^3)/2)^(1/3))), x=1..floor((N/3)^(1/3)))}:
    sort(convert(S, list));
  • PARI
    list(lim)=my(v=List(),s,g,x3); lim\=1; if(lim<3, return([])); for(x=1,sqrtnint(lim\3,3), x3=x^3; for(y=x,sqrtnint((lim-x3)\2,3), s=x3+y^3; g=gcd(x,y); if(g>1, for(z=y,sqrtnint(lim-s,3), if(gcd(g,z)==1, listput(v,s+z^3))), for(z=y,sqrtnint(lim-s,3), listput(v,s+z^3))))); Set(v) \\ Charles R Greathouse IV, May 18 2020
Showing 1-6 of 6 results.