cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A254324 Least Y such that X^3 + Y^3 = A020898(n)*Z^3 for some X <= Y and some Z.

Original entry on oeis.org

1, 37, 5, 2, 89, 7, 683
Offset: 1

Views

Author

M. F. Hasler, Jan 27 2015

Keywords

Comments

Also, max {X,Y,Z} for the smallest (in this sense of this sup norm) positive integer solution (X,Y,Z) to X^3 + Y^3 = A020898(n)*Z^3.
The X values are given in A254326.
a(8) > 10^5, with A020898(8)=17. Then the sequence continues a(9,10,...) = 5, 19, ?, 75, 3, 163, ?, 1853, ?, 3, 19, ...

Examples

			A020898(1)=2 and 1^3 + 1^3 = 2*1^3, therefore a(1)=1.
A020898(2)=6 and 17^3 + 37^3 = 6*21^3, and there is no "smaller" solution (with X, Y, Z < 37), therefore a(2)=37.
		

Crossrefs

Programs

  • PARI
    a(n,L=10^9)={n=if(n>0,A020898[n],-n); for(b=1,L,for(a=1,b,(a^3+b^3)%n&&next;ispower((a^3+b^3)/n,3)&&return(b)))}

A254326 X value for the "least" solution (X,Y,Z) to X^3 + Y^3 = A020898(n)*Z^3, X <= Y.

Original entry on oeis.org

1, 17, 4, 1, 19, 2, 397
Offset: 1

Views

Author

M. F. Hasler, Jan 28 2015

Keywords

Comments

The Y values, sup norms of the solution vector (X,Y,Z), are given in A254324.

Examples

			A020898(1)=2: 1^3 + 1^3 = 2*1^3,
A020898(2)=6: 17^3 + 37^3 = 6*21^3,
A020898(3)=7: 4^3 + 5^3 = 7*3^3,
A020898(4)=9: 1^3 + 2^3 = 9*1^3,
A020898(5)=12: 19^3 + 89^3 = 12*39^3,
A020898(6)=13: 2^3 + 7^3 = 13*3^3,
A020898(7)=15: 397^3 + 683^3 = 15*294^3, ...
For n >=9 the smallest solutions are: 3^3 + 5^3 = 19*2^3, 1^3 + 19^3 = 20*7^3, ?, 53^3 + 75^3 = 26*28^3, 1^3 + 3^3 = 28*1^3, 107^3 + 163^3 = 30*57^3, ?, 523^3 + 1853^3 = 33*582^3, ?, 2^3 + 3^3 = 35*1^3, 18^3 + 19^3 = 37*7^3, ?, 1^3 + 7^3 = 43*2^3, ...
		

A159843 Sums of two rational cubes.

Original entry on oeis.org

1, 2, 6, 7, 8, 9, 12, 13, 15, 16, 17, 19, 20, 22, 26, 27, 28, 30, 31, 33, 34, 35, 37, 42, 43, 48, 49, 50, 51, 53, 54, 56, 58, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 75, 78, 79, 84, 85, 86, 87, 89, 90, 91, 92, 94, 96, 97, 98, 103, 104, 105, 106, 107, 110, 114, 115, 117
Offset: 1

Views

Author

Steven Finch, Apr 23 2009

Keywords

Comments

Conjectured asymptotic (based on the random matrix theory) is given in Cohen (2007) on p. 378.
The prime elements are listed in A166246. - Max Alekseyev, Oct 10 2009
Alpöge et al. prove 'that the density of integers expressible as the sum of two rational cubes is strictly positive and strictly less than 1.' The authors remark that it is natural to conjecture that these integers 'have natural density exactly 1/2.' - Peter Luschny, Nov 30 2022
Jha, Majumdar, & Sury prove that every nonzero residue class mod p (for prime p) has infinitely many elements, as do 1 and 8 mod 9. - Charles R Greathouse IV, Jan 24 2023
Alpöge, Bhargava, & Shnidman prove that the lower density of this sequence is at least 2/21 and its upper density is at most 5/6. - Charles R Greathouse IV, Feb 15 2023

References

  • H. Cohen, Number Theory. I, Tools and Diophantine Equations, Springer-Verlag, 2007, p. 379.

Crossrefs

Complement of A185345.
Subsequences include A045980, A004999, and A003325.

Programs

  • Mathematica
    (* A naive program with a few pre-computed terms *) nmax = 117; xmax = 2000; CubeFreePart[n_] := Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 3]} & /@ FactorInteger[n]); nn = Join[{1}, Reap[ Do[n = CubeFreePart[x*y*(x + y)]; If[1 < n <= nmax, Sow[n]], {x, 1, xmax}, {y, x, xmax}]][[2, 1]] // Union]; A159843 = Select[ Union[nn, nn*2^3, nn*3^3, nn*4^3, {17, 31, 53, 67, 71, 79, 89, 94, 97, 103, 107}], # <= nmax &] (* Jean-François Alcover, Apr 03 2012 *)
  • PARI
    is(n, f=factor(n))=my(c=prod(i=1, #f~, f[i, 1]^(f[i, 2]\3)), r=n/c^3, E=ellinit([0, 16*r^2]), eri=ellrankinit(E), mwr=ellrank(eri), ar); if(r<3 || mwr[1], return(1)); if(mwr[2]<1, return(0)); ar=ellanalyticrank(E)[1]; if(ar<2, return(ar)); for(effort=1,99, mwr=ellrank(eri,effort); if(mwr[1]>0, return(1), mwr[2]<1, return(0))); "yes under BSD conjecture" \\ Charles R Greathouse IV, Dec 02 2022

Formula

A cubefree integer c>2 is in this sequence iff the elliptic curve y^2=x^3+16*c^2 has positive rank. - Max Alekseyev, Oct 10 2009

A202679 Numbers that are sums of two coprime positive cubes.

Original entry on oeis.org

2, 9, 28, 35, 65, 91, 126, 133, 152, 189, 217, 341, 344, 351, 370, 407, 468, 513, 539, 559, 637, 730, 737, 793, 854, 855, 1001, 1027, 1072, 1241, 1332, 1339, 1343, 1358, 1395, 1456, 1547, 1674, 1729, 1843, 1853, 2060, 2071, 2198, 2205, 2224, 2261, 2322, 2331, 2413
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 06 2012

Keywords

Comments

Not a subsequence of A020898: non-cubefree members of this sequence include 152, 189, 344, 351, 513, 1072. - Robert Israel, Mar 16 2016

Examples

			28 is in the sequence since 1^3 + 3^3 = 28 and (1, 3) = 1.
		

Crossrefs

Subsequence of A003325.

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    S:= {2,seq(seq(x^3 + y^3, y = select(t -> igcd(t,x)=1, [$x+1 .. floor((N - x^3)^(1/3))])), x = 1 .. floor((N/2)^(1/3)))}:
    sort(convert(S,list)); # Robert Israel, Mar 15 2016
  • Mathematica
    nn = 2500; Union[Flatten[Table[If[CoprimeQ[x, y] == True, x^3 + y^3, {}], {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}]]]
    Select[Range@ 2500, Length[PowersRepresentations[#, 2, 3] /. {{0, } -> Nothing, {a, b_} /; ! CoprimeQ[a, b] -> Nothing}] > 0 &] (* Michael De Vlieger, Mar 15 2016 *)
  • PARI
    is(n)=for(k=1,(n\2+.5)^(1/3),if(gcd(k,n)==1&&ispower(n-k^3, 3), return(1)));0 \\ Charles R Greathouse IV, Apr 13 2012
    
  • PARI
    list(lim)=my(v=List()); forstep(x=1, lim^(1/3), 2, forstep(y=2,(lim-x^3+.5)^(1/3), 2, if(gcd(x,y)==1, listput(v,x^3+y^3))); forstep(y=1, min((lim-x^3+.5)^(1/3),x), 2, if(gcd(x,y)==1, listput(v,x^3+y^3)))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Dec 05 2012

Formula

Erdős & Mahler shows that a(n) < kn^(3/2) for some k. Erdős later gives an elementary proof. - Charles R Greathouse IV, Dec 05 2012

A166246 Primes representable as the sum of two rational cubes.

Original entry on oeis.org

2, 7, 13, 17, 19, 31, 37, 43, 53, 61, 67, 71, 79, 89, 97, 103, 107, 127, 139, 151, 157, 163, 179, 193, 197, 211, 223, 229, 233, 241, 251, 269, 271, 277, 283, 313, 331, 337, 349, 359, 367, 373, 379, 397, 409, 421, 431, 433, 439, 449, 457, 463, 467, 499, 503, 521
Offset: 1

Views

Author

Max Alekseyev, Oct 10 2009

Keywords

Comments

The prime elements of A159843, i.e., the intersection of A159843 and A000040.
Also, the prime elements of A020898.

References

  • H. Cohen, Number Theory. I, Tools and Diophantine Equations, Springer-Verlag, 2007, p. 378.

Crossrefs

Programs

  • Mathematica
    (* To speed up computation, a few terms are pre-computed *) nmax = 521; xmax = 360; preComputed = {127, 271, 379}; solQ[p_] := Do[ If[ IntegerQ[z = Root[-x^3 - y^3 + p*#^3 & , 1]], Print[p, {x, y, z}]; Return[True]], {x, 2, xmax}, {y, x, xmax}]; A166246 = Union[ preComputed, Select[ Prime[ Range[ PrimePi[nmax]]], Mod[#, 9] == 4 || Mod[#, 9] == 7 || Mod[#, 9] == 8 || solQ[#] === True & ]](* Jean-François Alcover, Apr 04 2012, after given formula *)

Formula

Under the Birch and Swinnerton-Dyer conjecture, these primes consist of:
(i) p = 2;
(ii) p == 4, 7, or 8 (mod 9);
(iii) p == 1 (mod 9) and p divides A206309(p-1), i.e., Villegas-Zagier polynomial A166243((p-1)/3) evaluated at x=0.

A190356 Least positive x in the Diophantine equation x^3 + y^3 = n*z^3 (with x >= y and y != 0).

Original entry on oeis.org

1, 37, 2, 2, 89, 7, 683, 18, 3, 19, 25469, 3, 3, 163, 137, 1853, 631, 3, 4, 449, 7, 11, 23417, 730511, 1872, 28747, 5, 11, 4, 4, 5353, 2538163, 15409, 53, 197, 17351, 5563, 13, 433, 2570129, 13, 1176498611, 53, 1241, 4, 25903, 15642626656646177, 14, 5, 592, 4033, 165889, 90, 181, 9109, 5266097, 5, 184223499139, 5, 5, 7, 52954777
Offset: 1

Views

Author

Jean-François Alcover, May 11 2011

Keywords

Comments

This sequence a(k) is computed so that equation a(k)^3 + y^3 = A020898(k)*z^3 holds.
The 4 sequences A020898 [i.e., n], A190356 [i.e., x], A190580 [i.e., y] and A190581 [i.e., z] satisfy the equation A190356(n)^3 + A190580(n)^3 = A020898(n) * A190581(n)^3.
All x values above 25469 were obtained from Mishima's list and may not be the least positive solution.

Examples

			a(18) = 3 because A020898(18) = 35 and 3^3 + 2^3 = 35*1^3.
		

Crossrefs

Programs

  • Mathematica
    (* Let x = u + v and y = u - v *)
    f[n_, m_] := (r =  Reduce[u > 0 && v > 0 && Mod[2*u^3 + 6*u*v^2, n] == 0, {u, v},  Integers] ;
    uv={u,v}/.(ToRules/@ List@@ r[[All,-2;;-1]])/.C-> c;
    xy = (s = {};
    Do[sel =  Select[uv,  IntegerQ[((2*#1[[1]]^3 + 6*#1[[1]]*#1[[2]]^2)/n)^(1/ 3)] &];
    If[sel =!= {}, AppendTo[s, sel] ], {c[1], 0, m}, {c[2], 0,  m}];
    {#[[1]] + #[[2]], #[[1]] - #[[2]]} & /@ (s //
    Flatten[#, 1] &)) // Select[#, Total[#] != 0 &] &;
    nxyz =  xy /. {x_Integer, y_} -> {n, x, y, ((x^3 + y^3)/n)^(1/3)};
    nxyz /. ({, x, y_, z_} /; {x, y, z} != {0, 0, 0} &&
    GCD[x, y, z] != 1) :> (gd = GCD[x, y, z]; {n, x/gd, y/gd, z/gd})) // Union // Sort[#, #1[[2]] < #2[[2]] &] &;
    g[n_] := (m0 = 1; While[(r = f[n, m0]) == {}, m0 = 2 m0];
    r // First);
    A020898 = {2, 6, 7, 9, 12, 13, 15, 17, 19, 20, 22, 26, 28, 30, 31, 33, 34, 35, 37, 42, 43, 49, 50, 51, 53, 58, 61, 62, 63, 65, 67, 68, 69, 70, 71, 75, 78, 79, 84, 85, 86, 87, 89, 90, 91, 92, 94, 97, 98, 103, 105, 106, 107, 110, 114, 115, 117, 123, 124, 126, 127, 130}; km = Length[A020898]; (* xm(n) = some hard to compute values of x from Hisanori Mishima's list *) xm[22]=25469; xm[50]=23417; xm[51]=730511; xm[58]=28747; xm[68]=2538163; xm[69]=15409; xm[75]=17351; xm[85]=2570129; xm[87]=1176498611; xm[92]=25903; xm[94]=15642626656646177; xm[106]=165889; xm[114]=9109; xm[115]=5266097; xm[123]=184223499139; xm[130]=52954777; xm[n_] := xm[n] = g[n][[2]];
    A190356 = Table[ n = A020898[[k]]; Print[xm[n]]; xm[n], {k, 1, km}] (* Jean-François Alcover, Jan 03 2012 *)

Extensions

Positions corresponding to n=124 and n=127 (which were not minimal) corrected by Jean-François Alcover
Extended to 62 terms by Jean-François Alcover, Jan 03 2012

A190580 Value of y in the Diophantine equation x^3 + y^3 = n*z^3 (with x>0 and minimal and x >= y and y != 0).

Original entry on oeis.org

1, 17, -1, 1, 19, 2, 397, -1, -2, 1, 17299, -1, 1, 107, -65, 523, -359, 2, -3, -71, 1, -2, -11267, 62641, -1819, -14653, -4, 7, -1, 1, 1208, -472663, -10441, 17, -126, -11951, 53, -4, 323, -2404889, 5, -907929611, 36, -431, 3, -3547, -15616184186396177, -5, -3, -349, 3527, -140131, 17, -71, -901, -2741617, -2, 10183412861, -1, 1, -6, 33728183
Offset: 1

Views

Author

Jean-François Alcover, May 13 2011

Keywords

Comments

A190356(n)^3 + a(n)^3 = A020898(n)*z^3. Unknown z corresponds to sequence A190581.
The 4 sequences A020898 [i.e. n], A190356 [i.e. x], A190580 [i.e. y] and A190581 [i.e. z] satisfy the equation A190356^3 + A190580^3 = A020898 * A190581^3

Examples

			a(18) = 2  because  A020898(18) = 35 and 3^3 + 2^3 = 35*1^3.
		

Crossrefs

Programs

A190581 Value of z in the Diophantine equation x^3 + y^3 = n*z^3 (with x>0 and minimal and x >= y and y != 0).

Original entry on oeis.org

1, 21, 1, 1, 39, 3, 294, 7, 1, 7, 9954, 1, 1, 57, 42, 582, 182, 1, 1, 129, 2, 3, 6111, 197028, 217, 7083, 1, 3, 1, 1, 1323, 620505, 3318, 13, 43, 3606, 1302, 3, 111, 330498, 3, 216266610, 13, 273, 1, 5733, 590736058375050, 3, 1, 117, 1014, 25767, 19, 37, 1878, 1029364, 1, 37045412880, 1, 1, 1, 11285694
Offset: 1

Views

Author

Jean-François Alcover, May 13 2011

Keywords

Comments

A190356(n)^3 + y^3 = A020898(n)*a(n)^3. Unknown y corresponds to sequence A190580.
The 4 sequences A020898 [i.e. n], A190356 [i.e. x], A190580 [i.e. y] and A190581 [i.e. z] satisfy the equation A190356(n)^3 + A190580(n)^3 = A020898(n) * A190581(n)^3

Examples

			a(18) = 1  because  A020898(18) = 35 and 3^3 + 2^3 = 35*1^3.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := z /. ToRules[ Reduce[ z > 0 && A190356[[n]]^3 + A190580[[n]]^3 == A020898[[n]]*z^3, z, Integers]]; Table[a[n] , {n, 1, 62}]

A228485 Odd prime powers p^k such that p is congruent to 2 or 5 mod 9.

Original entry on oeis.org

5, 11, 23, 25, 29, 41, 47, 59, 83, 101, 113, 121, 125, 131, 137, 149, 167, 173, 191, 227, 239, 257, 263, 281, 293, 311, 317, 347, 353, 383, 389, 401, 419, 443, 461, 479, 491, 509, 529, 563, 569, 587, 599, 617, 625, 641, 653, 659, 677, 743, 761, 797, 821, 839
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 23 2013

Keywords

Comments

For any n, the equation x^3 + y^3 = a(n)*z^3 is not solvable in nonzero integers. Therefore, these numbers do not occur in A020898.

References

  • Henri Cohen, Number Theory. Volume I: Tools and Diophantine Equations, Graduate Texts in Mathematics 239, Springer, 2007, pp. 374-375.

Crossrefs

Cf. A020898, A025473. Subsequence of A061345.

Programs

  • PARI
    forstep(n=3, 839, 2, p=isprimepower(n); if(p>0, m=Mod(round(n^(1/p)), 9); if(m==2||m==5, print1(n, ", "))));

A228499 Sums of two rational cubes, excluding cubes and twice cubes.

Original entry on oeis.org

6, 7, 9, 12, 13, 15, 17, 19, 20, 22, 26, 28, 30, 31, 33, 34, 35, 37, 42, 43, 48, 49, 50, 51, 53, 56, 58, 61, 62, 63, 65, 67, 68, 69, 70, 71, 72, 75, 78, 79, 84, 85, 86, 87, 89, 90, 91, 92, 94, 96, 97, 98, 103, 104, 105, 106, 107, 110, 114, 115, 117, 120, 123, 124
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 23 2013

Keywords

Comments

Each term can be written as sum of two rational cubes infinitely many times.
These are all the integers A>0 such that the rank of the elliptic curve x^3 + y^3 = A is positive (A060838(A)>0). - Michael Somos, Feb 29 2020

References

  • Wacław Sierpiński, Teoria liczb, cz. II, PWN, Warsaw, 1959, pp. 472-473.

Crossrefs

Subsequence of A020897, and hence of A159843.

Programs

  • PARI
    for(n=1, 124, if(ellanalyticrank(ellinit([0, (4*n)^2]))[1]>0, print1(n, ", ")));
Showing 1-10 of 10 results.