cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A083233 a(n) = (3*8^n + 0^n)/4.

Original entry on oeis.org

1, 6, 48, 384, 3072, 24576, 196608, 1572864, 12582912, 100663296, 805306368, 6442450944, 51539607552, 412316860416, 3298534883328, 26388279066624, 211106232532992, 1688849860263936, 13510798882111488, 108086391056891904, 864691128455135232
Offset: 0

Views

Author

Paul Barry, Apr 23 2003

Keywords

Comments

Binomial transform of A083232. Inverse binomial transform of A066443.
Numbers k such that, except for some first term, k^2 = [A000302]^3 + [A004171]^3 + [A002001]^3; e.g., 3072^2 = 64^3 + 128^3 + 192^3; 51539607552^2 = 4194304^3 + 8388608^3 + 12582912^3. - Vincenzo Librandi, Aug 08 2010
With the exception of the first term, these numbers cannot be written as the sum of two integer cubes but can be written as the sum of two positive rational cubes (i.e., 6*8^n = (17*2^n/21)^3 + (37*2^n/21)^3). - Arkadiusz Wesolowski, Aug 15 2013
a(n+1) is the number of unit square faces on the convex hull of a level n Menger sponge. This follows since it has six exterior faces, each of which is a Sierpinski carpet with 8^n squares. - Allan Bickle, Nov 28 2022

Examples

			a(0) = (3*8^0 + 0^0)/4 = 4/4 = 1 (using 0^0 = 1).
		

Crossrefs

Cf. A083234. Subsequence of A159843.
Cf. A291066, A083233, and A332705 on the surface area of the n-Menger sponge graph.

Programs

Formula

a(n) = (3*8^n + 0^n)/4.
G.f.: (1-2x)/(1-8x).
E.g.f.: (3*exp(8x) + exp(0))/4.
a(0) = 1, a(n+1) = 6*8^n. - Arkadiusz Wesolowski, Aug 15 2013

A020898 Positive cubefree integers n such that the Diophantine equation X^3 + Y^3 = n*Z^3 has solutions.

Original entry on oeis.org

2, 6, 7, 9, 12, 13, 15, 17, 19, 20, 22, 26, 28, 30, 31, 33, 34, 35, 37, 42, 43, 49, 50, 51, 53, 58, 61, 62, 63, 65, 67, 68, 69, 70, 71, 75, 78, 79, 84, 85, 86, 87, 89, 90, 91, 92, 94, 97, 98, 103, 105, 106, 107, 110, 114, 115, 117, 123, 124, 126, 127, 130
Offset: 1

Views

Author

Keywords

Comments

These numbers are the cubefree sums of two nonzero rational cubes.
This sequence does not contain A202679, which has members that are not cubefree. - Robert Israel, Mar 16 2016
Notice that 34^3 + 74^3 = 48*21^3 = 6*42^3 because 48 = 6*2^3 is not cubefree, but now 17^3 + 37^3 = 6*21^3 and 6 is already listed in the sequence. - Michael Somos, Mar 13 2023

Examples

			37^3 + 17^3 = 6*21^3 is the smallest positive solution for n = 6 (found by Lagrange).
5^3 + 4^3 = 7*3^3 is the smallest positive solution for n = 7.
		

References

  • B. N. Delone and D. K. Faddeev, The Theory of Irrationalities of the Third Degree, Amer. Math. Soc., 1964.
  • L. E. Dickson, History of The Theory of Numbers, Vol. 2, Chap. XXI, Chelsea NY 1966.
  • L. J. Mordell, Diophantine Equations, Academic Press, Chap. 15.

Crossrefs

Programs

  • Mathematica
    (* A naive program with a few pre-computed terms *) nmax = 130; xmax = 2000; CubeFreePart[n_] := Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 3]} & /@ FactorInteger[n]); nn = Reap[ Do[ n = CubeFreePart[ x*y*(x+y) ]; If[ 1 < n <= nmax, Sow[n]], {x, 1, xmax}, {y, x, xmax}]][[2, 1]] // Union; A020898 = Union[nn, {17, 31, 53, 67, 71, 79, 89, 94, 97, 103, 107, 123}](* Jean-François Alcover, Mar 30 2012 *)

Extensions

Entry revised by N. J. A. Sloane, Aug 12 2004
Links updated by Max Alekseyev, Oct 17 2007 and Dec 12 2007

A020897 Sum of two nonzero rational cubes.

Original entry on oeis.org

2, 6, 7, 9, 12, 13, 15, 16, 17, 19, 20, 22, 26, 28, 30, 31, 33, 34, 35, 37, 42, 43, 48, 49, 50, 51, 53, 54, 56, 58, 61, 62, 63, 65, 67, 68, 69, 70, 71, 72, 75, 78, 79, 84, 85, 86, 87, 89, 90, 91, 92, 94, 96, 97, 98, 103, 104, 105, 106, 107, 110, 114, 115, 117, 120
Offset: 1

Views

Author

Keywords

Comments

n such that x^3 + y^3 = n*z^3 has a solution in nonnegative integers x,y,z.
Dolan on page 37 states: "Equation 1 is insoluble if n = 31, 38, 67, 76 or 95." - Michael Somos, Nov 18 2021
See the Selmer 1951 article pp. 357-360, Table 6, "The number g of generators and the basic solutions of the equation X^3 + Y^3 = AZ^3, A cubefree and <= 500. - Michael Somos, Feb 15 2022

Examples

			6*21^3 = 37^3 + 17^3, 7*3^3 = 5^3 + 4^3, 9*1^3 = 2^3 + 1^3, 12*39^3 = 89^3 + 19^3, 13*3^3 = 7^3 + 2^3, 15*294^3 = 683^3 + 397^3, ... - _Michael Somos_, Nov 18 2021
31*42^3 = 137^3 + (-65)^3, 67*1323^3 = 5353^3 + 1208^3. - _Michael Somos_, Feb 12 2022
		

Crossrefs

Subsequence of A159843.

Programs

  • Mathematica
    (* A naive program with a few pre-computed terms *) nmax = 120; xmax = 2000; CubeFreePart[n_] := Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 3]} & /@ FactorInteger[n]); nn = Reap[Do[n = CubeFreePart[x*y*(x+y)]; If[1 < n <= nmax, Sow[n]], {x, 1, xmax}, {y, x, xmax}]][[2, 1]] // Union; A020897 = Select[ Union[nn, nn*2^3, nn*3^3, nn*4^3, {17, 31, 53, 67, 71, 79, 89, 94, 97, 103, 107}], # <= nmax &] (* Jean-François Alcover, Apr 02 2012 *)

Extensions

Offset corrected by Arkadiusz Wesolowski, Aug 15 2013

A166246 Primes representable as the sum of two rational cubes.

Original entry on oeis.org

2, 7, 13, 17, 19, 31, 37, 43, 53, 61, 67, 71, 79, 89, 97, 103, 107, 127, 139, 151, 157, 163, 179, 193, 197, 211, 223, 229, 233, 241, 251, 269, 271, 277, 283, 313, 331, 337, 349, 359, 367, 373, 379, 397, 409, 421, 431, 433, 439, 449, 457, 463, 467, 499, 503, 521
Offset: 1

Views

Author

Max Alekseyev, Oct 10 2009

Keywords

Comments

The prime elements of A159843, i.e., the intersection of A159843 and A000040.
Also, the prime elements of A020898.

References

  • H. Cohen, Number Theory. I, Tools and Diophantine Equations, Springer-Verlag, 2007, p. 378.

Crossrefs

Programs

  • Mathematica
    (* To speed up computation, a few terms are pre-computed *) nmax = 521; xmax = 360; preComputed = {127, 271, 379}; solQ[p_] := Do[ If[ IntegerQ[z = Root[-x^3 - y^3 + p*#^3 & , 1]], Print[p, {x, y, z}]; Return[True]], {x, 2, xmax}, {y, x, xmax}]; A166246 = Union[ preComputed, Select[ Prime[ Range[ PrimePi[nmax]]], Mod[#, 9] == 4 || Mod[#, 9] == 7 || Mod[#, 9] == 8 || solQ[#] === True & ]](* Jean-François Alcover, Apr 04 2012, after given formula *)

Formula

Under the Birch and Swinnerton-Dyer conjecture, these primes consist of:
(i) p = 2;
(ii) p == 4, 7, or 8 (mod 9);
(iii) p == 1 (mod 9) and p divides A206309(p-1), i.e., Villegas-Zagier polynomial A166243((p-1)/3) evaluated at x=0.

A309960 Numbers k for which rank of the elliptic curve y^2 = x^3 - 432*k^2 is 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 10, 11, 14, 16, 18, 21, 23, 24, 25, 27, 29, 32, 36, 38, 39, 40, 41, 44, 45, 46, 47, 52, 54, 55, 57, 59, 60, 64, 66, 73, 74, 76, 77, 80, 81, 82, 83, 88, 93, 95, 99, 100, 101, 102, 108, 109, 111, 112, 113, 116, 118, 119, 121, 122, 125, 128, 129, 131, 135, 137
Offset: 1

Views

Author

Seiichi Manyama, Aug 25 2019

Keywords

Crossrefs

Complement of A159843 \ A000578.
Cf. A060748, A060838, A309961 (rank 1), A309962 (rank 2), A309963 (rank 3), A309964 (rank 4).

Programs

  • PARI
    for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, 0, -432*k^2]))[1]==0, print1(k", ")))
    
  • PARI
    is(n, f=factor(n))=my(c=prod(i=1, #f~, f[i, 1]^(f[i, 2]\3)), r=n/c^3, E, eri, mwr, ar); if(r<6, return(1)); E=ellinit([0, 16*r^2]); eri=ellrankinit(E); mwr=ellrank(eri); if(mwr[1], return(0)); ar=ellanalyticrank(E)[1]; if(ar<2, return(!ar)); for(effort=1, 99, mwr=ellrank(eri, effort); if(mwr[1]>0, return(0), mwr[2]<1, return(1))); "unknown (0 under BSD conjecture)" \\ Charles R Greathouse IV, Jan 24 2023

Formula

A060838(a(n)) = 0.

A309961 Numbers k for which rank of the elliptic curve y^2 = x^3 - 432*k^2 is 1.

Original entry on oeis.org

6, 7, 9, 12, 13, 15, 17, 20, 22, 26, 28, 31, 33, 34, 35, 42, 43, 48, 49, 50, 51, 53, 56, 58, 61, 62, 63, 67, 68, 69, 70, 71, 72, 75, 78, 79, 84, 85, 87, 89, 90, 92, 94, 96, 97, 98, 103, 104, 105, 106, 107, 114, 115, 117, 120, 123, 130, 133, 134, 136, 139, 140, 141, 142, 143, 151
Offset: 1

Views

Author

Seiichi Manyama, Aug 25 2019

Keywords

Crossrefs

Subsequence of A159843.
Cf. A060748, A060838, A309960 (rank 0), A309962 (rank 2), A309963 (rank 3), A309964 (rank 4).

Programs

  • PARI
    for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, 0, -432*k^2]))[1]==1, print1(k", ")))
    
  • PARI
    is(n, f=factor(n))=my(c=prod(i=1, #f~, f[i, 1]^(f[i, 2]\3)), r=n/c^3, E=ellinit([0, 16*r^2]), eri=ellrankinit(E), mwr=ellrank(eri), ar); if(r<6 || mwr[1]==0, return(0)); if(mwr[2]>1, return(0)); ar=ellanalyticrank(E)[1]; if(ar==0, return(0)); for(effort=1, 99, mwr=ellrank(eri, effort); if(mwr[1]>1 || mwr[2]<1, return(0), mwr[1]==mwr[2] && mwr[1]==1, return(1))); error("unknown (",ar==1," on the BSD conjecture)") \\ Charles R Greathouse IV, Jan 24 2023

Formula

A060838(a(n)) = 1.

A309962 Numbers k for which rank of the elliptic curve y^2 = x^3 - 432*k^2 is 2.

Original entry on oeis.org

19, 30, 37, 65, 86, 91, 110, 124, 126, 127, 132, 152, 153, 163, 182, 183, 201, 203, 209, 210, 217, 218, 219, 240, 246, 254, 271, 273, 282, 296, 309, 335, 342, 345, 348, 370, 379, 390, 397, 399, 407, 420, 433, 435, 436, 446, 453, 462, 468, 469, 477, 497, 498, 506, 513, 520, 523, 554
Offset: 1

Views

Author

Seiichi Manyama, Aug 25 2019

Keywords

Crossrefs

Subsequence of A159843.
Cf. A060748, A060838, A309960 (rank 0), A309961 (rank 1), A309963 (rank 3), A309964 (rank 4).

Programs

  • PARI
    for(k=1, 1e3, if(ellanalyticrank(ellinit([0, 0, 0, 0, -432*k^2]))[1]==2, print1(k", ")))

Formula

A060838(a(n)) = 2.

A309963 Numbers k for which rank of the elliptic curve y^2 = x^3 - 432*k^2 is 3.

Original entry on oeis.org

657, 854, 1020, 1122, 1241, 1267, 1330, 1339, 1426, 1482, 1554, 1798, 1853, 1892, 2015, 2310, 2346, 2574, 2763, 2771, 2805, 2869, 2914, 2947, 2977, 3036, 3383, 3445, 3465, 3526, 3894, 3913, 4002, 4209, 4290, 4362, 4706, 4711, 4830, 4921, 4930, 4977, 5025, 5053, 5074, 5193, 5256
Offset: 1

Views

Author

Seiichi Manyama, Aug 25 2019

Keywords

Crossrefs

Subsequence of A159843.
Cf. A060748, A060838, A309960 (rank 0), A309961 (rank 1), A309962 (rank 2), A309964 (rank 4).

Programs

  • PARI
    for(k=1, 5e3, if(ellanalyticrank(ellinit([0, 0, 0, 0, -432*k^2]))[1]==3, print1(k", ")))

Formula

A060838(a(n)) = 3.

A293648 Sum of two (possibly negative) coprime cubes in at least 2 ways, but not the sum of 2 noncoprime cubes.

Original entry on oeis.org

91, 217, 721, 1027, 1729, 3367, 4706, 4921, 4977, 7657, 8587, 8911, 9919, 10621, 14911, 15561, 16263, 20683, 21014, 23877, 25669, 27937, 28063, 31519, 35929, 39331, 40033, 49959, 63693, 68705, 68857, 68913, 73017, 77653, 77779, 97309, 98623, 106597, 109573
Offset: 1

Views

Author

Rosalie Fay, Oct 16 2017

Keywords

Comments

Not every term is cubefree; some are sb^3 where s is in A159843 and b > 1.

Examples

			63693 = 34^3 + 29^3 = 53^3 - 44^3 and 34 & 29 are coprime, as are 53 & -44, but it is not also the sum of cubes of 2 noncoprime integers, so 63693 is in the sequence.
		

Crossrefs

Cf. A293647 (allows noncoprime); A293649 (only positives); A293646, A293651

A309964 Numbers k for which rank of the elliptic curve y^2 = x^3 - 432*k^2 is 4.

Original entry on oeis.org

21691, 27937, 33193, 34706, 36667, 39331, 45353, 46299, 53265, 55298, 55335, 59295, 59690, 62628, 63147, 64001, 65683, 73963, 78604, 82290, 87653, 90489, 94681, 96139
Offset: 1

Views

Author

Seiichi Manyama, Aug 25 2019

Keywords

Crossrefs

Subsequence of A159843.
Cf. A060748, A060838, A309960 (rank 0), A309961 (rank 1), A309962 (rank 2), A309963 (rank 3).

Programs

  • PARI
    for(k=1, 5e4, if(ellanalyticrank(ellinit([0, 0, 0, 0, -432*k^2]))[1]==4, print1(k", ")))

Formula

A060838(a(n)) = 4.

Extensions

a(18)-a(24) from Maksym Voznyy, Jan 25 2023
Showing 1-10 of 19 results. Next