cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A001018 Powers of 8: a(n) = 8^n.

Original entry on oeis.org

1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, 134217728, 1073741824, 8589934592, 68719476736, 549755813888, 4398046511104, 35184372088832, 281474976710656, 2251799813685248, 18014398509481984, 144115188075855872, 1152921504606846976, 9223372036854775808, 73786976294838206464, 590295810358705651712, 4722366482869645213696
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 8), L(1, 8), P(1, 8), T(1, 8). Essentially same as Pisot sequences E(8, 64), L(8, 64), P(8, 64), T(8, 64). See A008776 for definitions of Pisot sequences.
If X_1, X_2, ..., X_n is a partition of the set {1..2n} into blocks of size 2 then, for n>=1, a(n) is equal to the number of functions f : {1..2n} -> {1,2,3} such that for fixed y_1,y_2,...,y_n in {1,2,3} we have f(X_i)<>{y_i}, (i=1..n). - Milan Janjic, May 24 2007
This is the auto-convolution (convolution square) of A059304. - R. J. Mathar, May 25 2009
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 8-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
a(n) is equal to the determinant of a 3 X 3 matrix with rows 2^(n+2), 2^(n+1), 2^n; 2^(n+3), 2^(n+4), 2(n+3); 2^n, 2^(n+1), 2^(n+2) when it is divided by 144. - J. M. Bergot, May 07 2014
a(n) gives the number of small squares in the n-th iteration of the Sierpinski carpet fractal. Equivalently, the number of vertices in the n-Sierpinski carpet graph. - Allan Bickle, Nov 27 2022

Examples

			For n=1, the 1st order Sierpinski carpet graph is an 8-cycle.
		

References

  • K. H. Rosen et al., eds., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2017; p. 15.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000079 (powers of 2), A000244 (powers of 3), A000302 (powers of 4), A000351 (powers of 5), A000400 (powers of 6), A000420 (powers of 7), A001019 (powers of 9), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009992 (powers of 48), A087752 (powers of 49), A165800 (powers of 50), A159991 (powers of 60).
Cf. A032766 (floor(3*n/2)).
Cf. A271939 (number of edges in the n-Sierpinski carpet graph).

Programs

Formula

a(n) = 8^n.
a(0) = 1; a(n) = 8*a(n-1) for n > 0.
G.f.: 1/(1-8*x).
E.g.f.: exp(8*x).
Sum_{n>=0} 1/a(n) = 8/7. - Gary W. Adamson, Aug 29 2008
a(n) = A157176(A008588(n)); a(n+1) = A157176(A016969(n)). - Reinhard Zumkeller, Feb 24 2009
From Stefano Spezia, Dec 28 2021: (Start)
a(n) = (-1)^n*(1 + sqrt(-3))^(3*n) (see Nunn, p. 9).
a(n) = (-1)^n*Sum_{k=0..floor(3*n/2)} (-3)^k*binomial(3*n, 2*k) (see Nunn, p. 9). (End)

A009964 Powers of 20.

Original entry on oeis.org

1, 20, 400, 8000, 160000, 3200000, 64000000, 1280000000, 25600000000, 512000000000, 10240000000000, 204800000000000, 4096000000000000, 81920000000000000, 1638400000000000000, 32768000000000000000
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 20), L(1, 20), P(1, 20), T(1, 20). Essentially same as Pisot sequences E(20, 400), L(20, 400), P(20, 400), T(20, 400). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 20-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
a(n) gives the number of small cubes in the n-th iteration of the Menger sponge fractal. - Felix Fröhlich, Jul 09 2016
Equivalently, the number of vertices in the n-Menger sponge graph.

Crossrefs

Cf. A291066 (edge count).
Cf. A291066, A083233, and A332705 on the surface area of the n-Menger sponge graph.

Programs

Formula

G.f.: 1/(1-20*x).
E.g.f.: exp(20*x).
a(n) = A159991(n)/A000244(n). - Reinhard Zumkeller, May 02 2009
From Vincenzo Librandi, Nov 21 2010: (Start)
a(n) = 20^n.
a(n) = 20*a(n-1) for n > 0, a(0) = 1. (End)
a(n) = A000079(n)*A011557(n) = A000302(n)*A000351(n). - Felix Fröhlich, Jul 09 2016

A112467 Riordan array ((1-2x)/(1-x), x/(1-x)).

Original entry on oeis.org

1, -1, 1, -1, 0, 1, -1, -1, 1, 1, -1, -2, 0, 2, 1, -1, -3, -2, 2, 3, 1, -1, -4, -5, 0, 5, 4, 1, -1, -5, -9, -5, 5, 9, 5, 1, -1, -6, -14, -14, 0, 14, 14, 6, 1, -1, -7, -20, -28, -14, 14, 28, 20, 7, 1, -1, -8, -27, -48, -42, 0, 42, 48, 27, 8, 1, -1, -9, -35, -75, -90, -42, 42, 90, 75, 35, 9, 1, -1, -10, -44, -110, -165, -132, 0, 132, 165, 110
Offset: 0

Views

Author

Paul Barry, Sep 06 2005

Keywords

Comments

Row sums are A000007. Diagonal sums are -F(n-2). Inverse is A112468. T(2n,n)=0.
(-1,1)-Pascal triangle. - Philippe Deléham, Aug 07 2006
Apart from initial term, same as A008482. - Philippe Deléham, Nov 07 2006
Each column equals the cumulative sum of the previous column. - Mats Granvik, Mar 15 2010
Reading along antidiagonals generates in essence rows of A192174. - Paul Curtz, Oct 02 2011
Triangle T(n,k), read by rows, given by (-1,2,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 01 2011

Examples

			Triangle starts:
    1;
   -1,  1;
   -1,  0,   1;
   -1, -1,   1,   1;
   -1, -2,   0,   2,   1;
   -1, -3,  -2,   2,   3,   1;
   -1, -4,  -5,   0,   5,   4,  1;
   -1, -5,  -9,  -5,   5,   9,  5,  1;
   -1, -6, -14, -14,   0,  14, 14,  6,  1;
   -1, -7, -20, -28, -14,  14, 28, 20,  7,  1;
   -1, -8, -27, -48, -42,   0, 42, 48, 27,  8, 1;
   -1, -9, -35, -75, -90, -42, 42, 90, 75, 35, 9, 1;
  ...
From _Paul Barry_, Apr 08 2011: (Start)
Production matrix begins:
   1,  1,
  -2, -1,  1,
   2,  0, -1,  1,
  -2,  0,  0, -1,  1,
   2,  0,  0,  0, -1,  1,
  -2,  0,  0,  0,  0, -1,  1,
   2,  0,  0,  0,  0,  0, -1,  1
  ... (End)
		

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else (2*k-n)*Binomial(n,k)/n: k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 04 2019
    
  • Maple
    seq(seq( `if`(n=0, 1, (2*k-n)*binomial(n,k)/n), k=0..n), n=0..10); # G. C. Greubel, Dec 04 2019
  • Mathematica
    T[n_, k_]= If[n==0, 1, ((2*k-n)/n)*Binomial[n, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Roger L. Bagula, Feb 16 2009; modified by G. C. Greubel, Dec 04 2019 *)
  • PARI
    T(n, k) = if(n==0, 1, (2*k-n)*binomial(n,k)/n ); \\ G. C. Greubel, Dec 04 2019
    
  • Sage
    def T(n, k):
        if (n==0): return 1
        else: return (2*k-n)*binomial(n,k)/n
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 04 2019

Formula

Number triangle T(n, k) = binomial(n, n-k) - 2*binomial(n-1, n-k-1).
Sum_{k=0..n} T(n, k)*x^k = (x-1)*(x+1)^(n-1). - Philippe Deléham, Oct 03 2005
T(n,k) = ((2*k-n)/n)*binomial(n, k), with T(0,0)=1. - Roger L. Bagula, Feb 16 2009; modified by G. C. Greubel, Dec 04 2019
T(n,k) = T(n-1,k-1) + T(n-1,k) with T(0,0)=1, T(1,0)=-1, T(n,k)=0 for k>n or for n<0. - Philippe Deléham, Nov 01 2011
G.f.: (1-2x)/(1-(1+y)*x). - Philippe Deléham, Dec 15 2011
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A133494(n), A081294(n), A005053(n), A067411(n), A199661(n), A083233(n) for x = 1, 2, 3, 4, 5, 6, 7, respectively. - Philippe Deléham, Dec 15 2011
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(-1 - x + x^2/2! + x^3/3!) = -1 - 2*x - 2*x^2/2! + 5*x^4/4! + 14*x^5/5! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 21 2014
Sum_{k=0..n} T(n,k) = 0^n = A000007(n). - G. C. Greubel, Dec 04 2019

A066443 Number of distinct paths of length 2n+1 along edges of a unit cube between two fixed adjacent vertices.

Original entry on oeis.org

1, 7, 61, 547, 4921, 44287, 398581, 3587227, 32285041, 290565367, 2615088301, 23535794707, 211822152361, 1906399371247, 17157594341221, 154418349070987, 1389765141638881, 12507886274749927, 112570976472749341
Offset: 0

Views

Author

John W. Layman, Aug 12 2002

Keywords

Comments

All members of sequence are also hex, or central hexagonal, numbers (A003215). (If n is a hex number, 9n - 2 is always a hex number; see recurrence.) - Matthew Vandermast, Mar 30 2003
The sequence 1,1,7,61,547,... with g.f. (1-9x+6x^2)/((1-x)(1-9x)) and a(n) = A054879(n)/3 + 2*0^n/3 gives the denominators in the probability that a random walk on the cube returns to its starting corner on the 2n-th step. - Paul Barry, Mar 11 2004
Equals row sums of even row terms of triangle A158303. - Gary W. Adamson, Mar 15 2009
It appears that a(n) is the n-th record value in A120437, which gives the differences of A037314 (positive integers n such that the sum of the base 3 digits of n equals the sum of the base 9 digits of n). - John W. Layman, Dec 14 2010
Numbers in base 9 are 1, 6+1, 66+1, 666+1, 6666+1, 66666+1, etc.; that is, n 6's + 1. - Yuchun Ji, Aug 15 2019
All prime factors of a(n) are 1 mod 6. In addition, if n is not 1 mod 3 (first index being n=0), then 3 is a cubic residue modulo all prime factors of a(n). This provides a simple proof that there are infinitely many primes 1 mod 6 that have 3 as a cubic residue. - William Hu, Jul 26 2024

Examples

			From _Michael B. Porter_, Aug 22 2016: (Start)
Give coordinates (a,b,c) to the vertices of the cube, where a, b, and c are either 0 or 1. For n = 1, the a(1) = 7 paths of length 2n + 1 = 3 from (0,0,0) to (0,0,1) are:
(0,0,0) -> (0,0,1) -> (0,0,0) -> (0,0,1)
(0,0,0) -> (0,0,1) -> (0,1,1) -> (0,0,1)
(0,0,0) -> (0,0,1) -> (1,0,1) -> (0,0,1)
(0,0,0) -> (0,1,0) -> (0,0,0) -> (0,0,1)
(0,0,0) -> (0,1,0) -> (0,1,1) -> (0,0,1)
(0,0,0) -> (1,0,0) -> (0,0,0) -> (0,0,1)
(0,0,0) -> (1,0,0) -> (1,0,1) -> (0,0,1) (End)
		

Crossrefs

Cf. A158303, A037314, A120437, A083234 (binomial transform), A083233 (inverse binomial transform), A054879 (recurrent walks), A125857 (walks ending on face diagonal), A054880 (walks ending on space diagonal).

Programs

  • Magma
    [(3^(2*n+1)+1)/4: n in [0..20]]; // Vincenzo Librandi, Jun 16 2011
    
  • Maple
    seq((3^(2*n+1) + 1)/4, n=0..18); # Zerinvary Lajos, Jun 16 2007
  • Mathematica
    NestList[9 # - 2 &, 1, 18] (* or *)
    Table[(3^(2 n + 1) + 1)/4, {n, 0, 18}] (* or *)
    CoefficientList[Series[(1 - 3 x)/((1 - x) (1 - 9 x)), {x, 0, 18}], x] (* Michael De Vlieger, Aug 22 2016 *)
  • PARI
    a(n)=3^(2*n+1)\/4 \\ Charles R Greathouse IV, Jul 02 2013
    
  • PARI
    Vec((1-3*x)/((1-x)*(1-9*x)) + O(x^50)) \\ Altug Alkan, Nov 13 2015

Formula

a(n) = (3^(2*n+1)+1)/4. - Vladeta Jovovic, Dec 22 2002
a(n) = 9*a(n-1) - 2. - Matthew Vandermast, Mar 30 2003
From Paul Barry, Apr 21 2003: (Start)
G.f.: (1-3*x)/((1-x)*(1-9*x)).
E.g.f.: (3*exp(9*x) + exp(x))/4. (End)
a(n) = (-1)^n times the (i, i)-th element of M^n (for any i), where M = ((1, 1, 1, -2), (1, 1, -2, 1), (1, -2, 1, 1), (-2, 1, 1, 1)). - Simone Severini, Nov 25 2004
a(n) = Sum_{k=0..n} binomial(2*n+1, 2*k)*4^(n-k). - Paul Barry, Jan 22 2005
a(n) = A054880(n) + 1.
a(n) = A057660(3^n). - Henry Bottomley, Nov 08 2015
a(n) = Sum_{k=0..2n} (-3)^k == 1 + Sum_{k=1..n} 2*3^(2k-1). - Bob Selcoe, Aug 21 2016
a(n) = 3^(2*n+1) * a(-1-n) for all n in Z. - Michael Somos, Jul 02 2017
a(n) = 6*A002452(n) + 1. - Yuchun Ji, Aug 15 2019

Extensions

Corrected by Vladeta Jovovic, Dec 22 2002

A291066 Number of edges in the n-Menger sponge graph.

Original entry on oeis.org

24, 672, 14976, 311808, 6334464, 127475712, 2555805696, 51166445568, 1023731564544, 20477852516352, 409582820130816, 8191862561046528, 163838900488372224, 3276791203906977792, 65535929631255822336, 1310719437050046578688, 26214395496400372629504, 524287963971202981036032
Offset: 1

Views

Author

Eric W. Weisstein, Aug 17 2017

Keywords

Comments

Also the number of maximal and maximum cliques in the n-Menger sponge graph. - Eric W. Weisstein, Dec 01 2017
This is the "inside surface area" of the level n Menger sponge, that is, the number of unit square faces that are on the exterior, but not on the convex hull of the Menger sponge. - Allan Bickle, Nov 28 2022

Examples

			The level 1 Menger sponge graph can be formed by subdividing every edge of a cube graph.  This produces a graph with 24 edges, so a(1) = 24.
		

Crossrefs

Cf. A009964 (vertex count).
Cf. A291066, A083233, and A332705 on the surface area of the n-Menger sponge graph.

Programs

  • Mathematica
    Table[2^(2 n + 1) (5^n - 2^n), {n, 20}]
    LinearRecurrence[{28, -160}, {24, 672}, 20]
    CoefficientList[Series[24/(1 - 28 x + 160 x^2), {x, 0, 20}], x]
  • PARI
    a(n)=2*(20^n-8^n) \\ Charles R Greathouse IV, Nov 29 2022
    
  • Python
    def A291066(n): return (5**n-(1<Chai Wah Wu, Nov 27 2023

Formula

a(n) = 2^(2*n + 1)*(5^n - 2^n).
a(n) = 28*a(n-1) - 160*a(n-2).
G.f.: (24 x)/(1 - 28 x + 160 x^2).
a(n) = 2 * (20^n - 8^n). - Allan Bickle, Nov 28 2022
a(n) = 20*a(n-1) + 24*8^(n-1). - Allan Bickle, Nov 28 2022
a(n) = A332705(n) - A083233(n+1). - Allan Bickle, Nov 28 2022

A332705 Number of unit square faces (or surface area) of a stage-n Menger sponge.

Original entry on oeis.org

6, 72, 1056, 18048, 336384, 6531072, 129048576, 2568388608, 51267108864, 1024536870912, 20484294967296, 409634359738368, 8192274877906944, 163842199023255552, 3276817592186044416, 65536140737488355328, 1310721125899906842624
Offset: 0

Views

Author

Eric Andres, Feb 20 2020

Keywords

Comments

The values are established based on the following observation: A stage-0 Menger sponge has 6 faces (a cube). Note that a face here corresponds to the unit face of a unit cube used to construct the Menger sponge. This means that counting the faces is equivalent to computing the surface area. After that, a stage-n Menger sponge is created by replacing each of the 20 cubes of the stage-1 Menger sponge with a stage-(n-1) Menger sponge. Each of the 8 stage-(n-1) sponges on the corner loses 3 sides of outer faces (which represents a total of 8^(n-1) faces). Each of the 12 stage-(n-1) Menger sponges on the edges (between the corners) lose two sides of outer faces. Thus the recurrence formula given below.

Examples

			a(0)=6 is the number of faces of a cube.
a(1)=72 is the number of faces of a stage-1 Menger sponge, which has 6*8 faces on its convex hull, and 6*4 faces not on its convex hull.
		

Crossrefs

Related to A135918 (Genus of stage-n Menger sponge). The ratio of this sequence / genus of the stage-n Menger sponge tends toward 38/3.
Cf. A009964 (vertices of graph), A291066 (edges of graph).
Cf. A291066, A083233, and A332705 on the surface area of the n-Menger sponge graph.

Programs

  • Mathematica
    seq[n_] := 20 seq[n - 1] - 3*2^(4 + 3 (n - 1)) /; (n >= 1); seq[0] := 6;
  • PARI
    Vec(6*(1 - 16*x) / ((1 - 8*x)*(1 - 20*x)) + O(x^20)) \\ Colin Barker, Feb 20 2020
    
  • Python
    def A332705(n): return (5**n+(1<Chai Wah Wu, Nov 27 2023

Formula

a(n) = 20*a(n-1) - 3*2^(1 + 3*n); with a(0)=6.
a(n) = 2^(1 + 2*n) (2^(1 + n) + 5^n) (Direct formula based on suggestion by Rémy Sigrist).
From Colin Barker, Feb 20 2020: (Start)
G.f.: 6*(1 - 16*x) / ((1 - 8*x)*(1 - 20*x)).
a(n) = 28*a(n-1) - 160*a(n-2) for n > 2. (End)
E.g.f.: 2*exp(8*x)*(2 + exp(12*x)). - Stefano Spezia, Feb 20 2020
From Allan Bickle, Nov 28 2022: (Start)
a(n) = 2*20^n + 4*8^n.
a(n) = A291066(n) + A083233(n+1). (End)

A359452 Number of vertices in the partite set of the n-Menger sponge graph that contains the corners.

Original entry on oeis.org

1, 8, 208, 3968, 80128, 1599488, 32002048, 639991808, 12800032768, 255999868928, 5120000524288, 102399997902848, 2048000008388608, 40959999966445568, 819200000134217728, 16383999999463129088, 327680000002147483648, 6553599999991410065408, 131072000000034359738368
Offset: 0

Views

Author

Allan Bickle, Jan 02 2023

Keywords

Comments

This sequence and the sequence counting the non-corner vertices (A359453) alternate as to which is larger.

Examples

			The level 1 Menger sponge graph can be formed by subdividing every edge of a cube graph.  This produces a graph with 8 corner vertices and 12 non-corner vertices, so a(1) = 8.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359453 (number of non-corner vertices).
Cf. A291066, A083233, and A332705 on the surface area of the n-Menger sponge graph.
Cf. A262710.

Programs

Formula

a(n) = (20^n + (-4)^n)/2.
a(n) = (A009964(n) + A262710(n))/2.
a(n) = 20^n - A359453(n).
From Stefano Spezia, Jan 02 2023: (Start)
O.g.f.: (1 - 8*x)/((1 - 20*x)*(1 + 4*x)).
E.g.f.: exp(8*x)*cosh(12*x). (End)

A359453 Number of vertices in the partite set of the n-Menger sponge graph that do not contain the corners.

Original entry on oeis.org

0, 12, 192, 4032, 79872, 1600512, 31997952, 640008192, 12799967232, 256000131072, 5119999475712, 102400002097152, 2047999991611392, 40960000033554432, 819199999865782272, 16384000000536870912, 327679999997852516352, 6553600000008589934592, 131071999999965640261632
Offset: 0

Views

Author

Allan Bickle, Jan 02 2023

Keywords

Comments

This sequence and the sequence counting the corner vertices (A359452) alternate as to which is larger.

Examples

			The level 1 Menger sponge graph can be formed by subdividing every edge of a cube graph.  This produces a graph with 8 corner vertices and 12 non-corner vertices, so a(1) = 12.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452 (number of corner vertices).
Cf. A291066, A083233, and A332705 on the surface area of the n-Menger sponge graph.

Programs

Formula

a(n) = (20^n - (-4)^n)/2.
a(n) = (A009964(n) - A262710(n))/2.
a(n) = 20^n - A359452(n).
From Stefano Spezia, Jan 02 2023: (Start)
O.g.f.: 12*x/((1 - 20*x)*(1 + 4*x)).
E.g.f.: (cosh(8*x) + sinh(8*x))*sinh(12*x). (End)

A365606 Number of degree 2 vertices in the n-Sierpinski carpet graph.

Original entry on oeis.org

8, 20, 84, 500, 3540, 26996, 212052, 1684724, 13442772, 107437172, 859182420, 6872514548, 54977282004, 439809752948, 3518452514388, 28147543587572, 225180119118036, 1801440264196724, 14411520047331156, 115292154179921396, 922337214843187668, 7378697662956950900, 59029581136289955924
Offset: 1

Views

Author

Allan Bickle, Sep 12 2023

Keywords

Comments

The level 0 Sierpinski carpet graph is a single vertex. The level n Sierpinski carpet graph is formed from 8 copies of level n-1 by joining boundary vertices between adjacent copies.

Examples

			The level 1 Sierpinski carpet graph is an 8-cycle, which has 8 degree 2 vertices and 0 degree 3 or 4 vertices.  Thus a(1) = 8.
		

Crossrefs

Cf. A001018 (order), A271939 (size).
Cf. A365606 (degree 2), A365607 (degree 3), A365608 (degree 4).
Cf. A009964, A291066, A359452, A359453, A291066, A083233, A332705 (Menger sponge graph).

Programs

  • Mathematica
    LinearRecurrence[{12,-35,24},{8,20,84},30] (* Paolo Xausa, Oct 16 2023 *)
  • Python
    def A365606(n): return ((1<<3*n-1)+(3**(n-1)<<4))//5+4 # Chai Wah Wu, Nov 27 2023

Formula

a(n) = (1/10)*8^n + (16/15)*3^n + 4.
a(n) = 8*a(n-1) - 16*3^(n-2) - 28.
a(n) = 8^n - A365607(n) - A365608(n).
2*a(n) = 2*A271939(n) - 3*A365607(n) - 4*A365608(n).
G.f.: 4*x*(2 - 19*x + 31*x^2)/((1 - x)*(1 - 3*x)*(1 - 8*x)). - Stefano Spezia, Sep 12 2023

A365607 Number of degree 3 vertices in the n-Sierpinski carpet graph.

Original entry on oeis.org

0, 40, 328, 2536, 19912, 158056, 1260616, 10073320, 80551624, 644308072, 5154149704, 41232252904, 329855188936, 2638833008488, 21110638558792, 168885031942888, 1351080025960648, 10808639518937704, 86469114085259080, 691752906483344872, 5534023233270575560, 44272185810376054120
Offset: 1

Views

Author

Allan Bickle, Sep 12 2023

Keywords

Comments

The level 0 Sierpinski carpet graph is a single vertex. The level n Sierpinski carpet graph is formed from 8 copies of level n-1 by joining boundary vertices between adjacent copies.

Examples

			The level 1 Sierpinski carpet graph is an 8-cycle, which has 8 degree 2 vertices and 0 degree 3 or 4 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A001018 (order), A271939 (size).
Cf. A365606 (degree 2), A365607 (degree 3), A365608 (degree 4).
Cf. A009964, A291066, A359452, A359453, A291066, A083233, A332705 (Menger sponge graph).

Programs

  • Mathematica
    LinearRecurrence[{12,-35,24},{0,40,328},30] (* Paolo Xausa, Oct 16 2023 *)
  • Python
    def A365607(n): return ((3<<3*n)+(3**(n-1)<<4))//5-8 # Chai Wah Wu, Nov 27 2023

Formula

a(n) = (3/5)*8^n + (16/15)*3^n - 8.
a(n) = 8*a(n-1) - 16*3^(n-2) + 56.
a(n) = 8^n - A365606(n) - A365608(n).
3*a(n) = 2*A271939(n) - 2*A365606(n) - 4*A365608(n).
G.f.: 8*x^2*(5 - 19*x)/((1 - x)*(1 - 3*x)*(1 - 8*x)). - Stefano Spezia, Sep 12 2023
Showing 1-10 of 20 results. Next