Original entry on oeis.org
1, 20, 400, 8000, 160000, 3200000, 64000000, 1280000000, 25600000000, 512000000000, 10240000000000, 204800000000000, 4096000000000000, 81920000000000000, 1638400000000000000, 32768000000000000000
Offset: 0
- T. D. Noe, Table of n, a(n) for n = 0..100
- Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
- Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
- Tanya Khovanova, Recursive Sequences
- Eric Weisstein's World of Mathematics, Menger Sponge
- Eric Weisstein's World of Mathematics, Menger Sponge Graph
- Eric Weisstein's World of Mathematics, Vertex Count
- Wikipedia, Menger sponge
- Index entries for linear recurrences with constant coefficients, signature (20).
-
List([0..20],n->20^n); # Muniru A Asiru, Nov 21 2018
-
[20^n: n in [0..100]] // Vincenzo Librandi, Nov 21 2010
-
[20^n$n=0..20]; # Muniru A Asiru, Nov 21 2018
-
20^Range[0, 10] (* or *) LinearRecurrence[{20}, {1}, 20] (* Eric W. Weisstein, Aug 17 2017 *)
-
makelist(20^n,n,0,30); /* Martin Ettl, Nov 05 2012 */
-
a(n)=20^n \\ Charles R Greathouse IV, Jun 19 2015
-
powers(20,12) \\ Charles R Greathouse IV, Jun 19 2015
-
[20**n for n in range(21)] # Stefano Spezia, Nov 21 2018
-
[20^n for n in range(21)] # Zerinvary Lajos, Apr 29 2009
A083233
a(n) = (3*8^n + 0^n)/4.
Original entry on oeis.org
1, 6, 48, 384, 3072, 24576, 196608, 1572864, 12582912, 100663296, 805306368, 6442450944, 51539607552, 412316860416, 3298534883328, 26388279066624, 211106232532992, 1688849860263936, 13510798882111488, 108086391056891904, 864691128455135232
Offset: 0
a(0) = (3*8^0 + 0^0)/4 = 4/4 = 1 (using 0^0 = 1).
A332705
Number of unit square faces (or surface area) of a stage-n Menger sponge.
Original entry on oeis.org
6, 72, 1056, 18048, 336384, 6531072, 129048576, 2568388608, 51267108864, 1024536870912, 20484294967296, 409634359738368, 8192274877906944, 163842199023255552, 3276817592186044416, 65536140737488355328, 1310721125899906842624
Offset: 0
a(0)=6 is the number of faces of a cube.
a(1)=72 is the number of faces of a stage-1 Menger sponge, which has 6*8 faces on its convex hull, and 6*4 faces not on its convex hull.
- Colin Barker, Table of n, a(n) for n = 0..750
- Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
- Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
- Eric Weisstein's World of Mathematics, Menger Sponge Graph
- Wikipedia, Menger sponge
- Index entries for linear recurrences with constant coefficients, signature (28,-160).
Related to
A135918 (Genus of stage-n Menger sponge). The ratio of this sequence / genus of the stage-n Menger sponge tends toward 38/3.
-
seq[n_] := 20 seq[n - 1] - 3*2^(4 + 3 (n - 1)) /; (n >= 1); seq[0] := 6;
-
Vec(6*(1 - 16*x) / ((1 - 8*x)*(1 - 20*x)) + O(x^20)) \\ Colin Barker, Feb 20 2020
-
def A332705(n): return (5**n+(1<Chai Wah Wu, Nov 27 2023
A359452
Number of vertices in the partite set of the n-Menger sponge graph that contains the corners.
Original entry on oeis.org
1, 8, 208, 3968, 80128, 1599488, 32002048, 639991808, 12800032768, 255999868928, 5120000524288, 102399997902848, 2048000008388608, 40959999966445568, 819200000134217728, 16383999999463129088, 327680000002147483648, 6553599999991410065408, 131072000000034359738368
Offset: 0
The level 1 Menger sponge graph can be formed by subdividing every edge of a cube graph. This produces a graph with 8 corner vertices and 12 non-corner vertices, so a(1) = 8.
Cf.
A359453 (number of non-corner vertices).
A359453
Number of vertices in the partite set of the n-Menger sponge graph that do not contain the corners.
Original entry on oeis.org
0, 12, 192, 4032, 79872, 1600512, 31997952, 640008192, 12799967232, 256000131072, 5119999475712, 102400002097152, 2047999991611392, 40960000033554432, 819199999865782272, 16384000000536870912, 327679999997852516352, 6553600000008589934592, 131071999999965640261632
Offset: 0
The level 1 Menger sponge graph can be formed by subdividing every edge of a cube graph. This produces a graph with 8 corner vertices and 12 non-corner vertices, so a(1) = 12.
Cf.
A359452 (number of corner vertices).
A365606
Number of degree 2 vertices in the n-Sierpinski carpet graph.
Original entry on oeis.org
8, 20, 84, 500, 3540, 26996, 212052, 1684724, 13442772, 107437172, 859182420, 6872514548, 54977282004, 439809752948, 3518452514388, 28147543587572, 225180119118036, 1801440264196724, 14411520047331156, 115292154179921396, 922337214843187668, 7378697662956950900, 59029581136289955924
Offset: 1
The level 1 Sierpinski carpet graph is an 8-cycle, which has 8 degree 2 vertices and 0 degree 3 or 4 vertices. Thus a(1) = 8.
- Paolo Xausa, Table of n, a(n) for n = 1..1000
- Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
- Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
- Eric Weisstein's World of Mathematics, Sierpiński Carpet Graph
- Index entries for linear recurrences with constant coefficients, signature (12,-35,24).
-
LinearRecurrence[{12,-35,24},{8,20,84},30] (* Paolo Xausa, Oct 16 2023 *)
-
def A365606(n): return ((1<<3*n-1)+(3**(n-1)<<4))//5+4 # Chai Wah Wu, Nov 27 2023
A365607
Number of degree 3 vertices in the n-Sierpinski carpet graph.
Original entry on oeis.org
0, 40, 328, 2536, 19912, 158056, 1260616, 10073320, 80551624, 644308072, 5154149704, 41232252904, 329855188936, 2638833008488, 21110638558792, 168885031942888, 1351080025960648, 10808639518937704, 86469114085259080, 691752906483344872, 5534023233270575560, 44272185810376054120
Offset: 1
The level 1 Sierpinski carpet graph is an 8-cycle, which has 8 degree 2 vertices and 0 degree 3 or 4 vertices. Thus a(1) = 0.
- Paolo Xausa, Table of n, a(n) for n = 1..1000
- Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
- Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
- Eric Weisstein's World of Mathematics, Sierpiński Carpet Graph
- Index entries for linear recurrences with constant coefficients, signature (12,-35,24).
-
LinearRecurrence[{12,-35,24},{0,40,328},30] (* Paolo Xausa, Oct 16 2023 *)
-
def A365607(n): return ((3<<3*n)+(3**(n-1)<<4))//5-8 # Chai Wah Wu, Nov 27 2023
A365608
Number of degree 4 vertices in the n-Sierpinski carpet graph.
Original entry on oeis.org
0, 4, 100, 1060, 9316, 77092, 624484, 5019172, 40223332, 321996580, 2576602468, 20614709284, 164923342948, 1319403749668, 10555281015652, 84442401180196, 675539668606564, 5404318726347556, 43234553943265636, 345876443943580708, 2767011588741012580, 22136092821505201444, 177088742906772914020
Offset: 1
The level 1 Sierpinski carpet graph is an 8-cycle, which has 8 degree 2 vertices and 0 degree 3 or 4 vertices. Thus a(1) = 0.
- Paolo Xausa, Table of n, a(n) for n = 1..1000
- Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
- Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
- Eric Weisstein's World of Mathematics, Sierpiński Carpet Graph
- Index entries for linear recurrences with constant coefficients, signature (12,-35,24).
-
LinearRecurrence[{12,-35,24},{0,4,100},30] (* Paolo Xausa, Oct 16 2023 *)
-
def A365608(n): return ((3<<3*n-1)-(3**(n-1)<<5))//5+4 # Chai Wah Wu, Nov 27 2023
A367700
Number of degree 2 vertices in the n-Menger sponge graph.
Original entry on oeis.org
12, 72, 744, 11256, 201960, 3871416, 76138536, 1512609912, 30171384168, 602782587960, 12050495247528, 240968665611768, 4819043435788776, 96378229818994104, 1927543485550004520, 38550700825394191224, 771012665426135994984, 15420242499878035355448, 308404763528431125030312
Offset: 1
The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices. Thus a(1) = 12.
-
LinearRecurrence[{31,-244,480}, {12, 72, 744}, 25] (* Paolo Xausa, Nov 28 2023 *)
-
def A367700(n): return (5*20**n+(34<<3*n)+216*3**n)//85 # Chai Wah Wu, Nov 27 2023
A367701
Number of degree 3 vertices in the n-Menger sponge graph.
Original entry on oeis.org
8, 152, 2744, 49688, 941624, 18381464, 363917240, 7248334616, 144725667128, 2892582307736, 57836189374136, 1156600107729944, 23131012640050232, 462612336455034008, 9252183397644168632, 185043161299165038872, 3700859172747355380536, 74017151029040948253080
Offset: 1
The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices. Thus a(1) = 8.
- Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
- Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
- Eric Weisstein's World of Mathematics, Menger Sponge Graph.
- Index entries for linear recurrences with constant coefficients, signature (32,-275,724,-480).
-
LinearRecurrence[{32,-275,724,-480},{8,152,2744,49688},25] (* Paolo Xausa, Nov 28 2023 *)
-
def A367701(n): return ((3*5**n<<(n<<1)+3)+(51<<(3*n+1))-(3**(n+3)<<4))//85+8 # Chai Wah Wu, Nov 28 2023
Showing 1-10 of 14 results.
Comments