cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A009964 Powers of 20.

Original entry on oeis.org

1, 20, 400, 8000, 160000, 3200000, 64000000, 1280000000, 25600000000, 512000000000, 10240000000000, 204800000000000, 4096000000000000, 81920000000000000, 1638400000000000000, 32768000000000000000
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 20), L(1, 20), P(1, 20), T(1, 20). Essentially same as Pisot sequences E(20, 400), L(20, 400), P(20, 400), T(20, 400). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 20-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
a(n) gives the number of small cubes in the n-th iteration of the Menger sponge fractal. - Felix Fröhlich, Jul 09 2016
Equivalently, the number of vertices in the n-Menger sponge graph.

Crossrefs

Cf. A291066 (edge count).
Cf. A291066, A083233, and A332705 on the surface area of the n-Menger sponge graph.

Programs

Formula

G.f.: 1/(1-20*x).
E.g.f.: exp(20*x).
a(n) = A159991(n)/A000244(n). - Reinhard Zumkeller, May 02 2009
From Vincenzo Librandi, Nov 21 2010: (Start)
a(n) = 20^n.
a(n) = 20*a(n-1) for n > 0, a(0) = 1. (End)
a(n) = A000079(n)*A011557(n) = A000302(n)*A000351(n). - Felix Fröhlich, Jul 09 2016

A083233 a(n) = (3*8^n + 0^n)/4.

Original entry on oeis.org

1, 6, 48, 384, 3072, 24576, 196608, 1572864, 12582912, 100663296, 805306368, 6442450944, 51539607552, 412316860416, 3298534883328, 26388279066624, 211106232532992, 1688849860263936, 13510798882111488, 108086391056891904, 864691128455135232
Offset: 0

Views

Author

Paul Barry, Apr 23 2003

Keywords

Comments

Binomial transform of A083232. Inverse binomial transform of A066443.
Numbers k such that, except for some first term, k^2 = [A000302]^3 + [A004171]^3 + [A002001]^3; e.g., 3072^2 = 64^3 + 128^3 + 192^3; 51539607552^2 = 4194304^3 + 8388608^3 + 12582912^3. - Vincenzo Librandi, Aug 08 2010
With the exception of the first term, these numbers cannot be written as the sum of two integer cubes but can be written as the sum of two positive rational cubes (i.e., 6*8^n = (17*2^n/21)^3 + (37*2^n/21)^3). - Arkadiusz Wesolowski, Aug 15 2013
a(n+1) is the number of unit square faces on the convex hull of a level n Menger sponge. This follows since it has six exterior faces, each of which is a Sierpinski carpet with 8^n squares. - Allan Bickle, Nov 28 2022

Examples

			a(0) = (3*8^0 + 0^0)/4 = 4/4 = 1 (using 0^0 = 1).
		

Crossrefs

Cf. A083234. Subsequence of A159843.
Cf. A291066, A083233, and A332705 on the surface area of the n-Menger sponge graph.

Programs

Formula

a(n) = (3*8^n + 0^n)/4.
G.f.: (1-2x)/(1-8x).
E.g.f.: (3*exp(8x) + exp(0))/4.
a(0) = 1, a(n+1) = 6*8^n. - Arkadiusz Wesolowski, Aug 15 2013

A291066 Number of edges in the n-Menger sponge graph.

Original entry on oeis.org

24, 672, 14976, 311808, 6334464, 127475712, 2555805696, 51166445568, 1023731564544, 20477852516352, 409582820130816, 8191862561046528, 163838900488372224, 3276791203906977792, 65535929631255822336, 1310719437050046578688, 26214395496400372629504, 524287963971202981036032
Offset: 1

Views

Author

Eric W. Weisstein, Aug 17 2017

Keywords

Comments

Also the number of maximal and maximum cliques in the n-Menger sponge graph. - Eric W. Weisstein, Dec 01 2017
This is the "inside surface area" of the level n Menger sponge, that is, the number of unit square faces that are on the exterior, but not on the convex hull of the Menger sponge. - Allan Bickle, Nov 28 2022

Examples

			The level 1 Menger sponge graph can be formed by subdividing every edge of a cube graph.  This produces a graph with 24 edges, so a(1) = 24.
		

Crossrefs

Cf. A009964 (vertex count).
Cf. A291066, A083233, and A332705 on the surface area of the n-Menger sponge graph.

Programs

  • Mathematica
    Table[2^(2 n + 1) (5^n - 2^n), {n, 20}]
    LinearRecurrence[{28, -160}, {24, 672}, 20]
    CoefficientList[Series[24/(1 - 28 x + 160 x^2), {x, 0, 20}], x]
  • PARI
    a(n)=2*(20^n-8^n) \\ Charles R Greathouse IV, Nov 29 2022
    
  • Python
    def A291066(n): return (5**n-(1<Chai Wah Wu, Nov 27 2023

Formula

a(n) = 2^(2*n + 1)*(5^n - 2^n).
a(n) = 28*a(n-1) - 160*a(n-2).
G.f.: (24 x)/(1 - 28 x + 160 x^2).
a(n) = 2 * (20^n - 8^n). - Allan Bickle, Nov 28 2022
a(n) = 20*a(n-1) + 24*8^(n-1). - Allan Bickle, Nov 28 2022
a(n) = A332705(n) - A083233(n+1). - Allan Bickle, Nov 28 2022

A359452 Number of vertices in the partite set of the n-Menger sponge graph that contains the corners.

Original entry on oeis.org

1, 8, 208, 3968, 80128, 1599488, 32002048, 639991808, 12800032768, 255999868928, 5120000524288, 102399997902848, 2048000008388608, 40959999966445568, 819200000134217728, 16383999999463129088, 327680000002147483648, 6553599999991410065408, 131072000000034359738368
Offset: 0

Views

Author

Allan Bickle, Jan 02 2023

Keywords

Comments

This sequence and the sequence counting the non-corner vertices (A359453) alternate as to which is larger.

Examples

			The level 1 Menger sponge graph can be formed by subdividing every edge of a cube graph.  This produces a graph with 8 corner vertices and 12 non-corner vertices, so a(1) = 8.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359453 (number of non-corner vertices).
Cf. A291066, A083233, and A332705 on the surface area of the n-Menger sponge graph.
Cf. A262710.

Programs

Formula

a(n) = (20^n + (-4)^n)/2.
a(n) = (A009964(n) + A262710(n))/2.
a(n) = 20^n - A359453(n).
From Stefano Spezia, Jan 02 2023: (Start)
O.g.f.: (1 - 8*x)/((1 - 20*x)*(1 + 4*x)).
E.g.f.: exp(8*x)*cosh(12*x). (End)

A359453 Number of vertices in the partite set of the n-Menger sponge graph that do not contain the corners.

Original entry on oeis.org

0, 12, 192, 4032, 79872, 1600512, 31997952, 640008192, 12799967232, 256000131072, 5119999475712, 102400002097152, 2047999991611392, 40960000033554432, 819199999865782272, 16384000000536870912, 327679999997852516352, 6553600000008589934592, 131071999999965640261632
Offset: 0

Views

Author

Allan Bickle, Jan 02 2023

Keywords

Comments

This sequence and the sequence counting the corner vertices (A359452) alternate as to which is larger.

Examples

			The level 1 Menger sponge graph can be formed by subdividing every edge of a cube graph.  This produces a graph with 8 corner vertices and 12 non-corner vertices, so a(1) = 12.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452 (number of corner vertices).
Cf. A291066, A083233, and A332705 on the surface area of the n-Menger sponge graph.

Programs

Formula

a(n) = (20^n - (-4)^n)/2.
a(n) = (A009964(n) - A262710(n))/2.
a(n) = 20^n - A359452(n).
From Stefano Spezia, Jan 02 2023: (Start)
O.g.f.: 12*x/((1 - 20*x)*(1 + 4*x)).
E.g.f.: (cosh(8*x) + sinh(8*x))*sinh(12*x). (End)

A365606 Number of degree 2 vertices in the n-Sierpinski carpet graph.

Original entry on oeis.org

8, 20, 84, 500, 3540, 26996, 212052, 1684724, 13442772, 107437172, 859182420, 6872514548, 54977282004, 439809752948, 3518452514388, 28147543587572, 225180119118036, 1801440264196724, 14411520047331156, 115292154179921396, 922337214843187668, 7378697662956950900, 59029581136289955924
Offset: 1

Views

Author

Allan Bickle, Sep 12 2023

Keywords

Comments

The level 0 Sierpinski carpet graph is a single vertex. The level n Sierpinski carpet graph is formed from 8 copies of level n-1 by joining boundary vertices between adjacent copies.

Examples

			The level 1 Sierpinski carpet graph is an 8-cycle, which has 8 degree 2 vertices and 0 degree 3 or 4 vertices.  Thus a(1) = 8.
		

Crossrefs

Cf. A001018 (order), A271939 (size).
Cf. A365606 (degree 2), A365607 (degree 3), A365608 (degree 4).
Cf. A009964, A291066, A359452, A359453, A291066, A083233, A332705 (Menger sponge graph).

Programs

  • Mathematica
    LinearRecurrence[{12,-35,24},{8,20,84},30] (* Paolo Xausa, Oct 16 2023 *)
  • Python
    def A365606(n): return ((1<<3*n-1)+(3**(n-1)<<4))//5+4 # Chai Wah Wu, Nov 27 2023

Formula

a(n) = (1/10)*8^n + (16/15)*3^n + 4.
a(n) = 8*a(n-1) - 16*3^(n-2) - 28.
a(n) = 8^n - A365607(n) - A365608(n).
2*a(n) = 2*A271939(n) - 3*A365607(n) - 4*A365608(n).
G.f.: 4*x*(2 - 19*x + 31*x^2)/((1 - x)*(1 - 3*x)*(1 - 8*x)). - Stefano Spezia, Sep 12 2023

A365607 Number of degree 3 vertices in the n-Sierpinski carpet graph.

Original entry on oeis.org

0, 40, 328, 2536, 19912, 158056, 1260616, 10073320, 80551624, 644308072, 5154149704, 41232252904, 329855188936, 2638833008488, 21110638558792, 168885031942888, 1351080025960648, 10808639518937704, 86469114085259080, 691752906483344872, 5534023233270575560, 44272185810376054120
Offset: 1

Views

Author

Allan Bickle, Sep 12 2023

Keywords

Comments

The level 0 Sierpinski carpet graph is a single vertex. The level n Sierpinski carpet graph is formed from 8 copies of level n-1 by joining boundary vertices between adjacent copies.

Examples

			The level 1 Sierpinski carpet graph is an 8-cycle, which has 8 degree 2 vertices and 0 degree 3 or 4 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A001018 (order), A271939 (size).
Cf. A365606 (degree 2), A365607 (degree 3), A365608 (degree 4).
Cf. A009964, A291066, A359452, A359453, A291066, A083233, A332705 (Menger sponge graph).

Programs

  • Mathematica
    LinearRecurrence[{12,-35,24},{0,40,328},30] (* Paolo Xausa, Oct 16 2023 *)
  • Python
    def A365607(n): return ((3<<3*n)+(3**(n-1)<<4))//5-8 # Chai Wah Wu, Nov 27 2023

Formula

a(n) = (3/5)*8^n + (16/15)*3^n - 8.
a(n) = 8*a(n-1) - 16*3^(n-2) + 56.
a(n) = 8^n - A365606(n) - A365608(n).
3*a(n) = 2*A271939(n) - 2*A365606(n) - 4*A365608(n).
G.f.: 8*x^2*(5 - 19*x)/((1 - x)*(1 - 3*x)*(1 - 8*x)). - Stefano Spezia, Sep 12 2023

A365608 Number of degree 4 vertices in the n-Sierpinski carpet graph.

Original entry on oeis.org

0, 4, 100, 1060, 9316, 77092, 624484, 5019172, 40223332, 321996580, 2576602468, 20614709284, 164923342948, 1319403749668, 10555281015652, 84442401180196, 675539668606564, 5404318726347556, 43234553943265636, 345876443943580708, 2767011588741012580, 22136092821505201444, 177088742906772914020
Offset: 1

Views

Author

Allan Bickle, Sep 12 2023

Keywords

Comments

The level 0 Sierpinski carpet graph is a single vertex. The level n Sierpinski carpet graph is formed from 8 copies of level n-1 by joining boundary vertices between adjacent copies.

Examples

			The level 1 Sierpinski carpet graph is an 8-cycle, which has 8 degree 2 vertices and 0 degree 3 or 4 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A001018 (order), A271939 (size).
Cf. A365606 (degree 2), A365607 (degree 3), A365608 (degree 4).
Cf. A009964, A291066, A359452, A359453, A291066, A083233, A332705 (Menger sponge graph).

Programs

  • Mathematica
    LinearRecurrence[{12,-35,24},{0,4,100},30] (* Paolo Xausa, Oct 16 2023 *)
  • Python
    def A365608(n): return ((3<<3*n-1)-(3**(n-1)<<5))//5+4 # Chai Wah Wu, Nov 27 2023

Formula

a(n) = (3/10)*8^n - (32/15)*3^n + 4.
a(n) = 8*a(n-1) + 32*3^(n-2) - 28.
a(n) = 8^n - A365606(n) - A365607(n).
4*a(n) = 2*A271939(n) - 2*A365606(n) - 3*A365607(n).
G.f.: 4*x^2*(1 + 13*x)/((1 - x)*(1 - 3*x)*(1 - 8*x)). - Stefano Spezia, Sep 12 2023

A367700 Number of degree 2 vertices in the n-Menger sponge graph.

Original entry on oeis.org

12, 72, 744, 11256, 201960, 3871416, 76138536, 1512609912, 30171384168, 602782587960, 12050495247528, 240968665611768, 4819043435788776, 96378229818994104, 1927543485550004520, 38550700825394191224, 771012665426135994984, 15420242499878035355448, 308404763528431125030312
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 12.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A083233, A332705 (surface area).
Cf. A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365602, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{31,-244,480}, {12, 72, 744}, 25] (* Paolo Xausa, Nov 28 2023 *)
  • Python
    def A367700(n): return (5*20**n+(34<<3*n)+216*3**n)//85 # Chai Wah Wu, Nov 27 2023

Formula

a(n) = (1/17)*20^n + (2/5)*8^n + (216/85)*3^n.
a(n) = 20*a(n-1) - (3/5)*8^n - (72/5)*3^n.
a(n) = 20^n - A367701(n) - A367702(n) - A367706(n) - A367707(n).
2*a(n) = 2*A291066(n) - 3*A367701(n) - 4*A365602(n) - 5*A367706(n) - 6*A367707(n).
G.f.: 12*x*(1 - 25*x + 120*x^2)/((1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 27 2023

A367701 Number of degree 3 vertices in the n-Menger sponge graph.

Original entry on oeis.org

8, 152, 2744, 49688, 941624, 18381464, 363917240, 7248334616, 144725667128, 2892582307736, 57836189374136, 1156600107729944, 23131012640050232, 462612336455034008, 9252183397644168632, 185043161299165038872, 3700859172747355380536, 74017151029040948253080
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 8.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A291066, A083233, A332705 (surface area).
Cf. A367700, A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{32,-275,724,-480},{8,152,2744,49688},25] (* Paolo Xausa, Nov 28 2023 *)
  • Python
    def A367701(n): return ((3*5**n<<(n<<1)+3)+(51<<(3*n+1))-(3**(n+3)<<4))//85+8 # Chai Wah Wu, Nov 28 2023

Formula

a(n) = (24/85)*20^n + (6/5)*8^n - (432/85)*3^n + 8.
a(n) = 20*a(n-1) - (9/5)*8^n + (144/5)*3^n - 152.
a(n) = 20^n - A367700(n) - A367702(n) - A367706(n) - A367707(n).
3*a(n) = 2*A291066(n) - 2*A367700(n) - 4*A365602(n) - 5*A367706(n) - 6*A367707(n).
G.f.: 8*x*(1 - 13*x + 10*x^2 - 264*x^3)/((1 - x)*(1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 27 2023
Showing 1-10 of 13 results. Next