cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A365607 Number of degree 3 vertices in the n-Sierpinski carpet graph.

Original entry on oeis.org

0, 40, 328, 2536, 19912, 158056, 1260616, 10073320, 80551624, 644308072, 5154149704, 41232252904, 329855188936, 2638833008488, 21110638558792, 168885031942888, 1351080025960648, 10808639518937704, 86469114085259080, 691752906483344872, 5534023233270575560, 44272185810376054120
Offset: 1

Views

Author

Allan Bickle, Sep 12 2023

Keywords

Comments

The level 0 Sierpinski carpet graph is a single vertex. The level n Sierpinski carpet graph is formed from 8 copies of level n-1 by joining boundary vertices between adjacent copies.

Examples

			The level 1 Sierpinski carpet graph is an 8-cycle, which has 8 degree 2 vertices and 0 degree 3 or 4 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A001018 (order), A271939 (size).
Cf. A365606 (degree 2), A365607 (degree 3), A365608 (degree 4).
Cf. A009964, A291066, A359452, A359453, A291066, A083233, A332705 (Menger sponge graph).

Programs

  • Mathematica
    LinearRecurrence[{12,-35,24},{0,40,328},30] (* Paolo Xausa, Oct 16 2023 *)
  • Python
    def A365607(n): return ((3<<3*n)+(3**(n-1)<<4))//5-8 # Chai Wah Wu, Nov 27 2023

Formula

a(n) = (3/5)*8^n + (16/15)*3^n - 8.
a(n) = 8*a(n-1) - 16*3^(n-2) + 56.
a(n) = 8^n - A365606(n) - A365608(n).
3*a(n) = 2*A271939(n) - 2*A365606(n) - 4*A365608(n).
G.f.: 8*x^2*(5 - 19*x)/((1 - x)*(1 - 3*x)*(1 - 8*x)). - Stefano Spezia, Sep 12 2023

A365608 Number of degree 4 vertices in the n-Sierpinski carpet graph.

Original entry on oeis.org

0, 4, 100, 1060, 9316, 77092, 624484, 5019172, 40223332, 321996580, 2576602468, 20614709284, 164923342948, 1319403749668, 10555281015652, 84442401180196, 675539668606564, 5404318726347556, 43234553943265636, 345876443943580708, 2767011588741012580, 22136092821505201444, 177088742906772914020
Offset: 1

Views

Author

Allan Bickle, Sep 12 2023

Keywords

Comments

The level 0 Sierpinski carpet graph is a single vertex. The level n Sierpinski carpet graph is formed from 8 copies of level n-1 by joining boundary vertices between adjacent copies.

Examples

			The level 1 Sierpinski carpet graph is an 8-cycle, which has 8 degree 2 vertices and 0 degree 3 or 4 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A001018 (order), A271939 (size).
Cf. A365606 (degree 2), A365607 (degree 3), A365608 (degree 4).
Cf. A009964, A291066, A359452, A359453, A291066, A083233, A332705 (Menger sponge graph).

Programs

  • Mathematica
    LinearRecurrence[{12,-35,24},{0,4,100},30] (* Paolo Xausa, Oct 16 2023 *)
  • Python
    def A365608(n): return ((3<<3*n-1)-(3**(n-1)<<5))//5+4 # Chai Wah Wu, Nov 27 2023

Formula

a(n) = (3/10)*8^n - (32/15)*3^n + 4.
a(n) = 8*a(n-1) + 32*3^(n-2) - 28.
a(n) = 8^n - A365606(n) - A365607(n).
4*a(n) = 2*A271939(n) - 2*A365606(n) - 3*A365607(n).
G.f.: 4*x^2*(1 + 13*x)/((1 - x)*(1 - 3*x)*(1 - 8*x)). - Stefano Spezia, Sep 12 2023

A367700 Number of degree 2 vertices in the n-Menger sponge graph.

Original entry on oeis.org

12, 72, 744, 11256, 201960, 3871416, 76138536, 1512609912, 30171384168, 602782587960, 12050495247528, 240968665611768, 4819043435788776, 96378229818994104, 1927543485550004520, 38550700825394191224, 771012665426135994984, 15420242499878035355448, 308404763528431125030312
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 12.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A083233, A332705 (surface area).
Cf. A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365602, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{31,-244,480}, {12, 72, 744}, 25] (* Paolo Xausa, Nov 28 2023 *)
  • Python
    def A367700(n): return (5*20**n+(34<<3*n)+216*3**n)//85 # Chai Wah Wu, Nov 27 2023

Formula

a(n) = (1/17)*20^n + (2/5)*8^n + (216/85)*3^n.
a(n) = 20*a(n-1) - (3/5)*8^n - (72/5)*3^n.
a(n) = 20^n - A367701(n) - A367702(n) - A367706(n) - A367707(n).
2*a(n) = 2*A291066(n) - 3*A367701(n) - 4*A365602(n) - 5*A367706(n) - 6*A367707(n).
G.f.: 12*x*(1 - 25*x + 120*x^2)/((1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 27 2023

A367701 Number of degree 3 vertices in the n-Menger sponge graph.

Original entry on oeis.org

8, 152, 2744, 49688, 941624, 18381464, 363917240, 7248334616, 144725667128, 2892582307736, 57836189374136, 1156600107729944, 23131012640050232, 462612336455034008, 9252183397644168632, 185043161299165038872, 3700859172747355380536, 74017151029040948253080
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 8.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A291066, A083233, A332705 (surface area).
Cf. A367700, A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{32,-275,724,-480},{8,152,2744,49688},25] (* Paolo Xausa, Nov 28 2023 *)
  • Python
    def A367701(n): return ((3*5**n<<(n<<1)+3)+(51<<(3*n+1))-(3**(n+3)<<4))//85+8 # Chai Wah Wu, Nov 28 2023

Formula

a(n) = (24/85)*20^n + (6/5)*8^n - (432/85)*3^n + 8.
a(n) = 20*a(n-1) - (9/5)*8^n + (144/5)*3^n - 152.
a(n) = 20^n - A367700(n) - A367702(n) - A367706(n) - A367707(n).
3*a(n) = 2*A291066(n) - 2*A367700(n) - 4*A365602(n) - 5*A367706(n) - 6*A367707(n).
G.f.: 8*x*(1 - 13*x + 10*x^2 - 264*x^3)/((1 - x)*(1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 27 2023

A367702 Number of degree 4 vertices in the n-Menger sponge graph.

Original entry on oeis.org

0, 144, 2784, 57552, 1180320, 23889936, 480221280, 9624275280, 192645717024, 3854200280208, 77094305873376, 1541968557881808, 30840030795738528, 616805893363960080, 12336160087905835872, 246723539526229152336, 4934473492678780614432, 98689491470837087102352
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A291066, A083233, A332705 (surface area).
Cf. A367700, A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{32,-275,724,-480},{0,144,2784,57552},25] (* Paolo Xausa, Nov 29 2023 *)
  • Python
    def A367702(n): return ((5**n<<(n<<1)+5)-(17<<(3*n+2))+(3**(n+4)<<3))//85-24 # Chai Wah Wu, Nov 28 2023

Formula

a(n) = (32/85)*20^n - (4/5)*8^n + (648/85)*3^n - 24.
a(n) = 20*a(n-1) + (6/5)*8^n - (216/5)*3^n + 456.
a(n) = 20^n - A367700(n) - A367701(n) - A367706(n) - A367707(n).
4*a(n) = 2*A291066(n) - 2*A367700(n) - 3*A367701(n) - 5*A367706(n) - 6*A367707(n).
G.f.: 12*x^2*(7 - 224*x + 1865*x^2 - 4308*x^3)/(5*(1 - x)*(1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 28 2023

A367706 Number of degree 5 vertices in the n-Menger sponge graph.

Original entry on oeis.org

0, 24, 1272, 27192, 537720, 10638648, 211640184, 4223114808, 84382898808, 1687017131832, 33735198879096, 674662776506424, 13492925768472696, 269855876817045816, 5397096426544159608, 107941759648376656440, 2158833841895083390584, 43176666029284877542200, 863533234116651651590520
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A291066, A083233, A332705 (surface area).
Cf. A367700, A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{32,-275,724,-480},{0,24,1272,27192},25] (* Paolo Xausa, Nov 29 2023 *)
  • Python
    def A367706(n): return ((7*5**n<<(n<<1)+1)+(17<<(3*n+1))-(3**(n+3)<<5))//85+24 # Chai Wah Wu, Nov 28 2023

Formula

a(n) = (14/85)*20^n + (2/5)*8^n - (864/85)*3^n + 24.
a(n) = 20*a(n-1) - (3/5)*8^n + (288/5)*3^n - 456.
a(n) = 20^n - A367700(n) - A367701(n) - A367702(n) - A367707(n).
5*a(n) = 2*A291066(n) - 2*A367700(n) - 3*A367701(n) - 4*A365602(n) - 6*A367707(n).
G.f.: 24*x^2*(1 + 21*x - 288*x^2)/((1 - x)*(1- 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 28 2023

A367707 Number of degree 6 vertices in the n-Menger sponge graph.

Original entry on oeis.org

0, 8, 456, 14312, 338376, 7218536, 148082760, 2991665384, 60074332872, 1203417692264, 24083810625864, 481799892270056, 9636987359949768, 192747663544965992, 3855016602355831368, 77100838700834961128, 1542020827252644619464, 30840448970959051746920, 616809238826486098348872
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A291066, A083233, A332705 (surface area).
Cf. A367700, A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{32,-275,724,-480},{0,8,456,14312},25] (* Paolo Xausa, Nov 29 2023 *)
  • Python
    def A367707(n): return ((5**(n+1)<<(n<<1)+1)-(51<<(3*n+1))+(3**(n+3)<<4))//85-8 # Chai Wah Wu, Nov 28 2023

Formula

a(n) = (2/17)*20^n - (6/5)*8^n + (432/85)*3^n - 8.
a(n) = 20*a(n-1) + (9/5)*8^n - (144/5)*3^n + 152.
a(n) = 20^n - A367700(n) - A367701(n) - A367702(n) - A367706(n).
6*a(n) = 2*A291066(n) - 2*A367700(n) - 3*A367701(n) - 4*A365602(n) - 5*A367706(n).
G.f.: 8*x^2*(1 + 25*x + 240*x^2)/((1 - x)*(1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 28 2023

A291775 Domination number of the n-Sierpinski carpet graph.

Original entry on oeis.org

3, 18, 130, 1026
Offset: 1

Views

Author

Eric W. Weisstein, Aug 31 2017

Keywords

Comments

Also the lower independence number (=independent domination number) of the n-Sierpinski carpet graph. - Eric W. Weisstein, Aug 02 2023
From Allan Bickle, Aug 10 2024: (Start)
The level 0 Sierpinski carpet graph is a single vertex. The level n Sierpinski carpet graph is formed from 8 copies of level n-1 by joining boundary vertices between adjacent copies.
Conjecture: For n>1, a(n) = 2^(3n-2) + 2. There is an independent dominating set of this size consisting of the vertices on every third diagonal and two corner vertices.
(End)

Examples

			The 8-cycle has domination number 3, so a(1) = 3.
		

Crossrefs

Cf. A001018 (order), A271939 (size).
Cf. A365606 (degree 2), A365607 (degree 3), A365608 (degree 4).
Cf. A292707, A347651 (vertex sets).

A381517 Perimeter of the Sierpiński carpet at iteration n.

Original entry on oeis.org

4, 16, 80, 496, 3536, 26992, 212048, 1684720, 13442768, 107437168, 859182416, 6872514544, 54977282000, 439809752944, 3518452514384, 28147543587568, 225180119118032, 1801440264196720, 14411520047331152, 115292154179921392, 922337214843187664, 7378697662956950896, 59029581136289955920, 472236648588222693616
Offset: 0

Views

Author

Jakub Buczak, Feb 26 2025

Keywords

Comments

Carpet n has an overall size 3^n X 3^n and the perimeter here includes the perimeter of all holes within it.
Carpet n=0 is a unit square and has perimeter a(0) = 4.
Carpet n can be constructed by arranging 8 copies of carpet n-1 in a square with a hole in the middle,
X X X
X X
X X X
There are no gaps in each side so 2 sides of each n-1 are now not on the perimeter so a(n) = 8*a(n-1) - 16*3^(n-1).
An equivalent construction is to replace each of the 8^(n-1) unit squares of carpet n-1 with a 3 X 3 block of unit squares with a hole in the middle, so that a(n) = 3*a(n-1) + 4*8^(n-1).
A fractal is obtained by scaling the whole carpet down to a unit square and its scaled perimeter a(n)/3^n -> oo shows the perimeter is infinite even though the area is bounded.

Examples

			For n=0, a(0) = 4, the geometric representation is a square.
For n=3, a(3) = 496.
		

Crossrefs

Cf. A113210 (fractal dimension).

Programs

  • Python
    a = lambda n: (4 * (4 * 3**n + 8**n)) // 5

Formula

a(n) = (4/5)*(4*3^n + 8^n).
a(n) = A365606(n+1) - 4.
Showing 1-9 of 9 results.