cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A202815 The right-hand half-triangle of A185356 (or A202690).

Original entry on oeis.org

1, 1, 2, 3, 2, 0, 11, 14, 16, 16, 57, 46, 32, 16, 0, 361, 418, 464, 496, 512, 512, 2763, 2402, 1984, 1520, 1024, 512, 0, 24611, 27374, 29776, 31760, 33280, 34304, 34816, 34816, 250737, 226126, 198752, 168976, 137216, 103936, 69632, 34816, 0
Offset: 1

Views

Author

N. J. A. Sloane, Dec 25 2011

Keywords

Examples

			Triangle begins:
    1
    1   2
    3   2   0
   11  14  16  16
   57  46  32  16   0
  361 418 464 496 512 512
  ...
		

Crossrefs

Programs

  • PARI
    T(n,k) = {if ((k==0), return(0)); if (n==1, if (abs(k)==1, return(1))); if (n%2, if (k<0, sum(j=k+1, n-1, T(n-1,j)), sum(j=k, n-1, T(n-1,j))), if (k<0, sum(j=-n+1, k, T(n-1,j)), sum(j=-n+1, k-1, T(n-1,j))));}
    tabl(nn) = {for (n=1, nn, for (k=1, n, if (k, print1(T(n, k), ", "));); print;);} \\ Michel Marcus, Jun 03 2020

Extensions

More terms from Michel Marcus, Jun 03 2020

A335335 Irregular triangle T(n,k) of Arnold numbers with n>=1 and 1<= abs(k) <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 0, 2, 3, 3, 4, 4, 0, 4, 8, 11, 11, 14, 16, 16, 0, 16, 32, 46, 57, 57, 68, 76, 80, 80, 0, 80, 160, 236, 304, 361, 361, 418, 464, 496, 512, 512, 0, 512, 1024, 1520, 1984, 2402, 2763, 2763, 3124, 3428, 3664, 3824, 3904, 3904, 0, 3904, 7808, 11632, 15296, 18724, 21848, 24611, 24611, 27374, 29776, 31760, 33280, 34304, 34816, 34816
Offset: 1

Views

Author

Michel Marcus, Jun 02 2020

Keywords

Examples

			Triangle begins:
                        1,   1,
                   0,   1,   1,   2,
              0,   2,   3,   3,   4,   4,
         0,   4,   8,  11,  11,  14,  16,  16,
    0,  16,  32,  46,  57,  57,  68,  76,  80,  80,
0, 80, 160, 236, 304, 361, 361, 418, 464, 496, 512, 512,
		

Crossrefs

Cf. A001586 (row sums).

Programs

  • PARI
    T(n, k) = {if ((n==1) && (k==1), return (1)); if ((n+k) == 0, if (n==1, return(1), return (0))); if ((n>=k) && (k>1), return(T(n, k-1) + T(n-1, 1-k))); if ((k==1) && (n>k), return(T(n,-1))); if ((-1>=k) && (k>=-n), return(T(n, k-1) + T(n-1, -k)));}
    tabf(nn) = {for (n=1, nn, for (k=-n, -1, print1(T(n,k), ", ");); for (k=1, n, print1(T(n,k), ", ");); print;);}

Formula

T(n,k) is defined by T(1,1) = T(1,-1) = 1, T(n,-n) = 0 (n >= 2), and the recurrence
T(n,k) = T(n,k-1) + T(n-1,-k+1) if n >= k > 1,
T(n,k) = T(n,-1) if n > k = 1,
T(n,k) = T(n,k-1) + T(n-1,-k) if -1 >= k > -n.
Showing 1-2 of 2 results.