A202907 Expand 1/(1 - (3/2)*x + (2/3)*x^4 - x^5) in powers of x, then multiply coefficient of x^n by 3^floor(n/4)*2^n to get integers.
1, 3, 9, 27, 211, 633, 1899, 5697, 52297, 156891, 470673, 1412019, 12675403, 38026209, 114078627, 342235881, 3081171505, 9243514515, 27730543545, 83191630635, 748691121283, 2246073363849, 6738220091547
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,211,0,0,0,7776).
Programs
-
Mathematica
Table[3^Floor[k/4]*2^k*SeriesCoefficient[ Series[1/(1 - (3/2)* x + (2/3) x^4 - x^5), {x, 0, 30}], k], {k, 0, 30}] (* Bagula *) a[ n_] := 2^n 3^Quotient[ n, 4] SeriesCoefficient[ 1 / (1 - 3/2 x + 2/3 x^4 - x^5), {x, 0, n}] (* Michael Somos, Jan 27 2012 *)
Formula
From Chai Wah Wu, Aug 01 2020: (Start)
a(n) = 211*a(n-4) + 7776*a(n-8) for n > 7.
G.f.: -(3*x + 1)*(9*x^2 + 1)/(7776*x^8 + 211*x^4 - 1). (End)