A202917 For n >= 0, let n!^(1) = A053657(n+1) and, for 0 <= m <= n, C^(1)(n,m) = n!^(1)/(m!^(1)*(n-m)!^(1)). The sequence gives a triangle of numbers C^(1)(n,m) with rows of length n+1.
1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 60, 10, 60, 1, 1, 1, 10, 10, 1, 1, 1, 126, 21, 1260, 21, 126, 1, 1, 1, 21, 21, 21, 21, 1, 1
Offset: 0
Examples
Triangle begins n/m.|..0.....1.....2.....3.....4.....5.....6.....7 ================================================== .0..|..1 .1..|..1.....1 .2..|..1.....6.....1 .3..|..1.....1 ... 1 .....1 .4..|..1....60....10......60.....1 .5..|..1.....1....10......10.....1.....1 .6..|..1...126....21....1260....21...126.....1 .7..|..1.....1....21......21....21....21.....1.....1 .8..|
Programs
-
Mathematica
A053657[n_] := Product[p^Sum[Floor[(n-1)/((p-1) p^k)], {k, 0, n}], {p, Prime[Range[n]]}]; f1[n_] := A053657[n+1]; C1[n_, m_] := f1[n]/(f1[m] * f1[n-m]); Table[C1[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Nov 22 2016 *)
Comments