A203269 Row sums of triangle A202917.
1, 2, 8, 4, 132, 24, 1556, 88, 5364, 168, 5612, 136, 1128168, 28656, 86804, 1672, 3434920, 48080, 173886368, 2462176, 4093653652, 62126504, 4292224444, 10991336, 182512332988, 4948498616
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The sequence of polynomials begins: Q^(2)_0=1, Q^(2)_1=(2*x^3+3*x^2+x)/6, Q^(2)_2=(20*x^6+96*x^5+155*x^4+90*x^3+5*x^2-6*x)/360, Q^(2)_3=(280*x^9+2772*x^8+10518*x^7+18711*x^6+14385*x^5+1323*x^4-2863*x^3 -126*x^2+360*x)/45360.
Triangle begins n/m.|..0.....1.....2.....3.....4.....5.....6.....7 ================================================== .0..|..1 .1..|..1.....1 .2..|..1....10.....1 .3..|..1....21 ...21.....1 .4..|..1....20....42....20.....1 .5..|..1....11....22....22....11.....1 .6..|..1..2730..3003..2860..3003..2730.....1 .7..|..1.....1...273...143...143...273.....1.....1 .8..|
Triangle begins n/m.|..0.....1.....2.....3.....4.....5.....6.....7 ================================================== .0..|..1 .1..|..1......1 .2..|..1.....42.....1 .3..|..1......5 ....5......1 .4..|..1...1092...130...1092.....1 .5..|..1......1....26.....26.....1......1 .6..|..1..11970...285..62244...285..11970....1 .7..|..1.....11..3135....627...627...3135...11.....1 .8..|
Triangle begins n/m.|..0.....1.....2.....3.....4.....5.....6.....7 ================================================== .0..|..1 .1..|..1......1 .2..|..1......2......1 .3..|..1....273 ...273......1 .4..|..1.....68...9282.....68......1 .5..|..1.....55...1870...1870.....55......1 .6..|..1....546..15015...3740..15015....546....1 .7..|..1.....29...7917...1595...1595...7917...29.....1 .8..|
Triangle begins: n/m.|..0.....1.....2.....3.....4.....5.....6.....7 ================================================== .0..|..1 .1..|..1.....1 .2..|..1.....2.....1 .3..|..1.....3.....3.....1 .4..|..1.....2.....6.....2.....1 .5..|..1.....5....10....10.....5.....1 .6..|..1.....1.....5....10.....5.....1.....1 .7..|..1.....7.....7....35....35.....7.....7.....1
g:= proc(n) option remember; `if`(n=0, 1, ilcm(g(n-1), n)) end: CR:= proc(n, m) option remember; g(n)/max(g(m), g(n-m)) end: seq (seq (CR(n,m), m=0..n), n=0..11); # Alois P. Heinz, Jan 11 2012
g[n_] := g[n] = If[n == 0, 1, LCM[g[n-1], n]]; CR[n_, m_] := CR[n, m] = g[n]/Max[ g[m], g[n-m]]; Table[Table[CR[n, m], {m, 0, n}], {n, 0, 11}] // Flatten (* Jean-François Alcover, Mar 12 2015, after Alois P. Heinz *)
Comments