cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202993 G.f.: A(x) = exp( Sum_{n>=1} sigma(n^4)*x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 1, 16, 56, 296, 1052, 4952, 17292, 70512, 249712, 931226, 3212690, 11399590, 38331770, 130310820, 428389292, 1408697596, 4524980036, 14486512316, 45558807176, 142488702483, 439559056419, 1347096766984, 4082169772704, 12286806024269, 36629267989081
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2011

Keywords

Comments

Compare to g.f. of partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.

Examples

			G.f.: A(x) = 1 + x + 16*x^2 + 56*x^3 + 296*x^4 + 1052*x^5 + 4952*x^6 +...
log(A(x)) = x + 31*x^2/2 + 121*x^3/3 + 511*x^4/4 + 781*x^5/5 + 3751*x^6/6 + 2801*x^7/7 + 8191*x^8/8 +...+ A202994(n)*x^n/n +...
		

Crossrefs

Cf. A000203 (sigma), A000041 (partitions), A202994, A156304.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sigma(m^4)*x^m/m)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=if(n==0, 1, (1/n)*sum(k=1, n, sigma(k^4)*a(n-k)))}

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma(k^4) * a(n-k) for n>0, with a(0)=1.
log(a(n)) ~ 5 * 3^(1/5) * c^(1/5) * n^(4/5) / 2^(7/5), where c = Product_{primes p} (p*(1 + p + p^2 + p^4) / (p^5 - 1)) = 1.9202928959802946010362130828... - Vaclav Kotesovec, Nov 01 2024