cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A156304 G.f.: A(x) = exp( Sum_{n>=1} sigma(n^3)*x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 1, 8, 21, 77, 199, 661, 1663, 4852, 12382, 33289, 82877, 213026, 518109, 1279852, 3053404, 7312985, 17093793, 39952528, 91661695, 209709116, 473095589, 1062567288, 2359804486, 5214774263, 11415904502, 24860918943, 53709881911
Offset: 0

Views

Author

Paul D. Hanna, Feb 08 2009

Keywords

Comments

Compare to g.f. of partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.
Euler transform of A160889. - Vaclav Kotesovec, Nov 01 2024

Examples

			G.f.: A(x) = 1 + x + 8*x^2 + 21*x^3 + 77*x^4 + 199*x^5 + 661*x^6 +...
log(A(x)) = x + 15*x^2/2 + 40*x^3/3 + 127*x^4/4 + 156*x^5/5 + 600*x^6/6 +...
		

Crossrefs

Cf. A000203 (sigma), A000041 (partitions), A156303, A202993, A203557.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sigma(m^3)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=if(n==0,1,(1/n)*sum(k=1,n,sigma(k^3)*a(n-k)))}

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma(k^3) * a(n-k) for n>0, with a(0)=1.
log(a(n)) ~ 4*Pi*c^(1/4)*n^(3/4) / (3^(5/4)*5^(1/4)), where c = A330595 = Product_{primes p} (1 + 1/p^2 + 1/p^3) = 1.74893299784324530303390699... - Vaclav Kotesovec, Nov 01 2024

A202994 a(n) = sigma(n^4).

Original entry on oeis.org

1, 31, 121, 511, 781, 3751, 2801, 8191, 9841, 24211, 16105, 61831, 30941, 86831, 94501, 131071, 88741, 305071, 137561, 399091, 338921, 499255, 292561, 991111, 488281, 959171, 797161, 1431311, 732541, 2929531, 954305, 2097151, 1948705, 2750971, 2187581
Offset: 1

Views

Author

Paul D. Hanna, Dec 27 2011

Keywords

Comments

Here sigma(n^4) denotes the sums of divisors of n^4.

Examples

			L.g.f.: L(x) = x + 31*x^2/2 + 121*x^3/3 + 511*x^4/4 + 781*x^5/5 + 3751*x^6/6 +...
where exp(L(x)) = 1 + x + 16*x^2 + 56*x^3 + 296*x^4 + 1052*x^5 + 4952*x^6 +...+ A202993(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1,Range[40]^4] (* Harvey P. Dale, Jan 29 2012 *)
    f[p_, e_] := (p^(4*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 10 2020 *)
  • PARI
    {a(n)=sigma(n^4)}
    
  • Python
    from math import prod
    from sympy import factorint
    def A202994(n): return prod((p**((e<<2)+1)-1)//(p-1) for p,e in factorint(n).items()) # Chai Wah Wu, Oct 25 2023

Formula

a(11*n) == 0 (mod 5) iff gcd(n,11) = 1.
Logarithmic derivative of A202993.
Multiplicative with a(p^e) = (p^(4*e+1)-1)/(p-1) for prime p. - Andrew Howroyd, Jul 23 2018
a(n) = A000203(A000583(n)). - Michel Marcus, Sep 10 2020
Sum_{k>=1} 1/a(k) = 1.04483665108279017775482622699860068916340892303889072390102812885655694752... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(5)/5) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4) = 0.3840585791... . - Amiram Eldar, Nov 05 2022

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018

A203557 G.f.: exp( Sum_{n>=1} sigma(n^5)*x^n/n ).

Original entry on oeis.org

1, 1, 32, 153, 1145, 5677, 37641, 184685, 1047862, 5196410, 26935148, 129702476, 638028933, 2987297287, 14055935617, 64139004752, 291595380989, 1296984485909, 5732084828019, 24910785830408, 107411267744602, 457008372687439, 1928413165110846, 8046605441623654
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2012

Keywords

Comments

In general, if m >= 1 and g.f.= exp(Sum_{k>=1} sigma(k^m)*x^k/k), then log(a(n)) ~ (1 + 1/m) * (c*m!)^(1/(m+1)) * n^(m/(m+1)), where c = Product_{primes p} ((p^(m+2) - p^(m+1) + p^m - p) / ((p-1)*(p^(m+1)-1))). - Vaclav Kotesovec, Nov 01 2024

Examples

			G.f.: A(x) = 1 + x + 32*x^2 + 153*x^3 + 1145*x^4 + 5677*x^5 + 37641*x^6 +...
where the logarithm equals the l.g.f. of A203556:
log(A(x)) = x + 63/2*x^2 + 364/3*x^3 + 2047/4*x^4 + 3906/5*x^5 +...+ sigma(n^5)*x^n/n +...
		

Crossrefs

Cf. A203556, A000203 (sigma); variants: A000041 (m=1), A156303 (m=2), A156304 (m=3), A202993 (m=4).

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sigma(m^5)*x^m/m)+x*O(x^n)),n)}

Formula

Logarithmic derivative yields A203556.
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A203556(k)*a(n-k) for n > 0. - Seiichi Manyama, Sep 09 2020
log(a(n)) ~ 2^(3/2) * 3^(7/6) * c^(1/6) * n^(5/6) / 5^(5/6), where c = Product_{primes p} (p*(1 + p + p^2 + p^3 + p^5) / (p^6 - 1)) = 1.93252811194652723494722635658171746713... - Vaclav Kotesovec, Nov 01 2024

A319363 a(n) = [x^n] exp(Sum_{k>=1} sigma(k^n)*x^k/k).

Original entry on oeis.org

1, 1, 4, 21, 296, 5677, 291348, 22679763, 3946629792, 1281287791090, 840017139222515, 1068253745514088673, 2745322115165570881474, 14006438682727577999625359, 141884380264686466724199980066, 2897075017978846591982107951045864, 118770312781918226439371316982748736112
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 17 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[DivisorSigma[1, k^n] x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 16}]
Showing 1-4 of 4 results.