cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203016 Numbers congruent to {1, 2, 3, 4} mod 6, multiplied by 3.

Original entry on oeis.org

3, 6, 9, 12, 21, 24, 27, 30, 39, 42, 45, 48, 57, 60, 63, 66, 75, 78, 81, 84, 93, 96, 99, 102, 111, 114, 117, 120, 129, 132, 135, 138, 147, 150, 153, 156, 165, 168, 171, 174, 183, 186, 189, 192, 201, 204, 207, 210, 219, 222, 225, 228, 237, 240, 243, 246, 255, 258, 261, 264, 273, 276, 279, 282, 291, 294, 297
Offset: 1

Views

Author

N. J. A. Sloane, Dec 27 2011

Keywords

Comments

Appears to coincide with the list of numbers n such that A006600(n) is not a multiple of n. Equals A047227 multiplied by 3.

Crossrefs

Programs

  • Magma
    [3*n : n in [0..100] | n mod 6 in [1..4]]; // Wesley Ivan Hurt, Jun 07 2016
  • Maple
    A203016:=n->3*(6*n-5-I^(2*n)+(1+I)*I^(1-n)+(1-I)*I^(n-1))/4: seq(A203016(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
  • Mathematica
    3 Select[Range[100], MemberQ[{1, 2, 3, 4}, Mod[#, 6]] &] (* Wesley Ivan Hurt, Jun 07 2016 *)

Formula

From Wesley Ivan Hurt, Jun 07 2016: (Start)
G.f.: 3*x*(1+x+x^2+x^3+2*x^4)/((x-1)^2*(1+x+x^2+x^3)).
a(n) = 3*(6*n-5-i^(2*n)+(1+i)*i^(1-n)+(1-i)*i^(n-1))/4 where i=sqrt(-1).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(2k) = 3*A047235(k), a(2k-1) = 3*A047241(k). (End)
E.g.f.: 3*(4 + sin(x) - cos(x) + (3*x - 2)*sinh(x) + 3*(x - 1)*cosh(x))/2. - Ilya Gutkovskiy, Jun 07 2016