cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203025 Largest perfect power divisor of n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 8, 9, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, 4, 1, 1, 1, 8, 25, 1, 27, 4, 1, 1, 1, 32, 1, 1, 1, 36, 1, 1, 1, 8, 1, 1, 1, 4, 9, 1, 1, 16, 49, 25, 1, 4, 1, 27, 1, 8, 1, 1, 1, 4, 1, 1, 9, 64, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 25, 4, 1, 1, 1, 16, 81, 1
Offset: 1

Views

Author

Antonio Roldán, Dec 28 2011

Keywords

Comments

This sequence shares many elements with A057521, but is not identical: A057521(72)=72 but a(72)=36.
Not multiplicative: a(49)=49; a(125)=125, a(49*125) = 1225 <> 49*125.

Examples

			a(40)=a(2^3*5)=2^3=8.
		

Crossrefs

Programs

  • Maple
    A203025:=proc(n)
        local a,Le,d,i,k,pe;
        pe := ifactors(n)[2];
        Le := {seq(i[2],i=pe)} minus {1};
        a := 1;
        for k in Le do
            d := mul(i[1]^(k*floor(i[2]/k)), i=pe) ;
            a:=max(a,d);
        end do;
        a
    end proc:
    seq(A203025(n),n=1..10000); # Felix Huber, Jun 01 2025
  • Mathematica
    Table[If[SquareFreeQ[n], 1, s = FactorInteger[n]; Max[Table[Times @@ Cases[s, {p_, ep_} :> p^i /; (ep >= i)], {i, 2, Max[s[[All, 2]]]}]]], {n, 100}] (* Olivier Gerard, Jun 03 2016 *)
  • PARI
    a(n)=my(f=factor(n),mx=1);for(e=2,if(n>1,vecmax(f[,2])), mx=max(mx,prod(i=1,#f[,1],f[i,1]^(f[i,2]\e*e))));mx \\ Charles R Greathouse IV, Dec 28 2011

Formula

a(n) = max{ A001597(k) : A001597(k)|n }. - R. J. Mathar, Jun 09 2016

Extensions

Values matching definition restored by Franklin T. Adams-Watters, Jun 06 2016