cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203140 Decimal expansion of Gamma(1/12).

Original entry on oeis.org

1, 1, 4, 9, 9, 4, 2, 8, 1, 8, 6, 0, 7, 3, 9, 9, 0, 6, 6, 3, 8, 8, 5, 6, 0, 9, 8, 5, 2, 4, 3, 9, 2, 0, 0, 9, 7, 9, 8, 7, 6, 6, 1, 5, 2, 0, 1, 3, 6, 5, 2, 9, 7, 2, 1, 9, 5, 3, 8, 5, 1, 7, 8, 3, 9, 3, 6, 4, 7, 2, 5, 3, 9, 9, 5, 6, 7, 6, 1, 1, 8, 3, 5, 3, 4, 3, 5, 9, 1, 9, 8, 5, 7, 2, 2, 9, 8, 3, 8
Offset: 2

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			11.499428186073990663885609852439200979876615201365297219538...
		

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma(1/12); // G. C. Greubel, Mar 10 2018
  • Mathematica
    RealDigits[Gamma[1/12], 10, 100][[1]] (* G. C. Greubel, Jan 15 2017 *)
    RealDigits[3^(3/8) * Sqrt[1 + Sqrt[3]] * Gamma[1/3] * Gamma[1/4] / (2^(1/4) * Sqrt[Pi]), 10, 120][[1]] (* Vaclav Kotesovec, Apr 15 2024 *)
  • PARI
    default(realprecision, 100); gamma(1/12) \\ G. C. Greubel, Jan 15 2017
    

Formula

Equals 3^(3/8) * sqrt(1 + sqrt(3)) * Gamma(1/3) * Gamma(1/4) / (2^(1/4) * sqrt(Pi)). - Vaclav Kotesovec, Apr 15 2024