cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A256066 Decimal expansion of log(Gamma(1/12)).

Original entry on oeis.org

2, 4, 4, 2, 2, 9, 7, 3, 1, 1, 1, 8, 2, 8, 8, 9, 7, 5, 0, 9, 1, 5, 5, 4, 9, 3, 5, 2, 1, 9, 4, 0, 8, 8, 5, 8, 2, 0, 8, 6, 8, 4, 1, 1, 0, 7, 0, 9, 1, 5, 0, 0, 7, 8, 3, 3, 2, 0, 5, 6, 0, 9, 3, 6, 2, 3, 1, 4, 7, 1, 9, 0, 2, 9, 5, 8, 1, 3, 5, 6, 0, 0, 6, 0, 0, 7, 9, 9, 4, 4, 1, 0, 2, 1, 1, 3, 2, 2, 5, 2, 1, 1, 4, 6, 6
Offset: 1

Views

Author

Keywords

Examples

			2.44229731118288975091554935219408858208684110709150...
		

Crossrefs

Cf. A203140 (Gamma(1/12)), A256165 (log(Gamma(1/3))), A256166 (log(Gamma(1/4))), A256167 (log(Gamma(1/5))), A255888 (log(Gamma(1/6))), A255306 (log(Gamma(1/8))), A255189 (first generalized Stieltjes constant at 1/12, gamma_1(1/12)).

Programs

  • Maple
    evalf(log(GAMMA(1/12)),100);
    evalf(-(1/4)*log(2)+(3/8)*log(3)+(1/2)*log(1+sqrt(3))-(1/2)*log(Pi)+log(GAMMA(1/4))+log(GAMMA(1/3)), 100);
  • Mathematica
    RealDigits[Log[Gamma[1/12]],10,100][[1]]
  • PARI
    log(gamma(1/12))

Formula

Equals -(1/4)*log(2) + (3/8)*log(3) + (1/2)*log(1+sqrt(3)) - (1/2)*log(Pi) + log(Gamma(1/4)) + log(Gamma(1/3)).

A257955 Decimal expansion of Gamma(1/Pi).

Original entry on oeis.org

2, 8, 1, 1, 2, 9, 7, 5, 1, 4, 6, 7, 0, 8, 6, 1, 6, 4, 2, 1, 2, 2, 7, 9, 0, 8, 0, 3, 7, 1, 0, 4, 8, 1, 6, 9, 3, 5, 2, 8, 1, 6, 5, 5, 2, 2, 3, 2, 9, 1, 7, 6, 5, 6, 8, 2, 2, 8, 9, 6, 5, 9, 0, 5, 3, 9, 3, 8, 6, 1, 5, 4, 8, 8, 7, 0, 1, 9, 2, 0, 5, 6, 8, 5, 1, 8, 8, 4, 8, 7, 4, 2, 3, 1, 8, 9, 0, 9, 3, 6, 4, 2, 4
Offset: 1

Views

Author

Keywords

Comments

The reference gives an interesting product representation in terms of rational multiple of 1/Pi for Gamma(1/Pi).

Examples

			2.8112975146708616421227908037104816935281655223291765...
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(1/Pi), 117);
  • Mathematica
    RealDigits[Gamma[1/Pi], 10, 117][[1]]
  • PARI
    default(realprecision, 117); gamma(1/Pi)

A269545 Decimal expansion of Gamma(Pi).

Original entry on oeis.org

2, 2, 8, 8, 0, 3, 7, 7, 9, 5, 3, 4, 0, 0, 3, 2, 4, 1, 7, 9, 5, 9, 5, 8, 8, 9, 0, 9, 0, 6, 0, 2, 3, 3, 9, 2, 2, 8, 8, 9, 6, 8, 8, 1, 5, 3, 3, 5, 6, 2, 2, 2, 4, 4, 1, 1, 9, 9, 3, 8, 0, 7, 4, 5, 4, 7, 0, 4, 7, 1, 0, 0, 6, 6, 0, 8, 5, 0, 4, 2, 8, 2, 5, 0, 0, 7, 2, 5, 3, 0, 4, 4, 6, 7, 9, 2, 8, 4, 7, 4, 7, 9, 6
Offset: 1

Views

Author

Keywords

Examples

			2.2880377953400324179595889090602339228896881533562224...
		

Crossrefs

Programs

  • MATLAB
    format long; gamma(pi)
  • Maple
    evalf(GAMMA(Pi), 120);
  • Mathematica
    RealDigits[Gamma[Pi], 10, 120][[1]]
  • PARI
    default(realprecision, 120); gamma(Pi)
    

Formula

Equals Integral_{x >= 0} x^(Pi-1)/e^x dx (Euler integral of the second kind).

A269546 Decimal expansion of log(Gamma(Pi)).

Original entry on oeis.org

8, 2, 7, 6, 9, 4, 5, 9, 2, 3, 2, 3, 4, 3, 7, 1, 0, 1, 5, 2, 9, 5, 7, 8, 5, 5, 8, 4, 5, 2, 3, 5, 9, 9, 5, 1, 1, 5, 3, 5, 0, 1, 7, 3, 4, 1, 2, 0, 7, 3, 7, 3, 1, 6, 7, 9, 1, 3, 1, 9, 2, 2, 5, 8, 1, 7, 1, 9, 3, 5, 7, 7, 1, 9, 7, 6, 9, 1, 7, 1, 4, 1, 8, 3, 1, 5, 7, 5, 1, 6, 1, 8, 0, 5, 5, 1, 8, 7, 5, 3, 6, 0, 5
Offset: 0

Views

Author

Keywords

Comments

Gamma(x) is the Gamma function (Euler's integral of the second kind).

Examples

			0.8276945923234371015295785584523599511535017341207373...
		

Crossrefs

Programs

  • MATLAB
    format long; log(gamma(pi))
  • Maple
    evalf(lnGAMMA(Pi), 120);
  • Mathematica
    RealDigits[LogGamma[Pi], 10, 120][[1]]
  • PARI
    default(realprecision, 120); lngamma(Pi)
    

A269547 Decimal expansion of Psi(Pi).

Original entry on oeis.org

9, 7, 7, 2, 1, 3, 3, 0, 7, 9, 4, 2, 0, 0, 6, 7, 3, 3, 2, 9, 2, 0, 6, 9, 4, 8, 6, 4, 0, 6, 1, 8, 2, 3, 4, 3, 6, 4, 0, 8, 3, 4, 6, 0, 9, 9, 9, 4, 3, 2, 5, 6, 3, 8, 0, 0, 9, 5, 2, 3, 2, 8, 6, 5, 3, 1, 8, 1, 0, 5, 9, 2, 4, 7, 7, 7, 1, 4, 1, 3, 1, 7, 3, 0, 2, 0, 7, 5, 6, 5, 4, 3, 6, 2, 9, 2, 8, 7, 3, 4, 3, 5, 5
Offset: 0

Views

Author

Keywords

Comments

Psi(x) is the digamma function (logarithmic derivative of the Gamma function).

Examples

			0.9772133079420067332920694864061823436408346099943256...
		

Crossrefs

Programs

  • MATLAB
    format long; psi(pi)
  • Maple
    evalf(Psi(Pi), 120)
  • Mathematica
    RealDigits[PolyGamma[Pi], 10, 120][[1]]
  • PARI
    default(realprecision, 120); psi(Pi)
    

A269557 Decimal expansion of Gamma(log(2)).

Original entry on oeis.org

1, 3, 0, 9, 0, 4, 0, 9, 1, 1, 2, 8, 1, 4, 8, 1, 2, 6, 9, 8, 2, 4, 5, 3, 2, 5, 2, 1, 3, 9, 5, 9, 2, 9, 5, 7, 5, 6, 1, 2, 5, 8, 9, 0, 3, 1, 9, 1, 8, 1, 8, 9, 0, 0, 1, 0, 3, 8, 9, 8, 0, 0, 0, 7, 9, 0, 9, 0, 9, 3, 9, 7, 6, 3, 4, 5, 6, 3, 2, 7, 4, 7, 1, 6, 0, 9, 7, 4, 1, 2, 5, 0, 3, 0, 1, 0, 0, 4, 3, 5, 1, 0, 5
Offset: 1

Views

Author

Keywords

Comments

Gamma(x) is the Gamma function (Euler's integral of the second kind).

Examples

			1.3090409112814812698245325213959295756125890319181890...
		

Crossrefs

Programs

  • MATLAB
    format long; gamma(log(2))
  • Maple
    evalf(GAMMA(ln(2)), 120);
  • Mathematica
    RealDigits[Gamma[Log[2]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); gamma(log(2))
    

A269558 Decimal expansion of log(Gamma(log(2))).

Original entry on oeis.org

2, 6, 9, 2, 9, 4, 7, 4, 0, 2, 8, 3, 1, 3, 1, 2, 4, 2, 9, 4, 9, 9, 1, 6, 5, 8, 3, 2, 1, 1, 7, 1, 2, 8, 2, 4, 8, 8, 8, 9, 0, 3, 5, 1, 0, 2, 1, 1, 1, 6, 6, 1, 1, 7, 2, 8, 7, 0, 6, 1, 3, 1, 8, 9, 6, 9, 4, 8, 4, 9, 8, 7, 1, 3, 5, 9, 1, 1, 6, 0, 3, 2, 8, 0, 6, 2, 1, 6, 1, 5, 3, 6, 0, 2, 4, 6, 3, 8, 0, 9, 3, 0, 5
Offset: 0

Views

Author

Keywords

Comments

Gamma(x) is the Gamma function (Euler's integral of the second kind).

Examples

			0.2692947402831312429499165832117128248889035102111661...
		

Crossrefs

Programs

  • MATLAB
    format long; log(gamma(log(2)))
  • Maple
    evalf(lnGAMMA(ln(2)), 120);
  • Mathematica
    RealDigits[LogGamma[Log[2]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); lngamma(log(2))
    

A269559 Decimal expansion of Psi(log(2)), negated.

Original entry on oeis.org

1, 2, 3, 9, 5, 9, 7, 2, 7, 9, 6, 1, 7, 6, 1, 8, 5, 0, 8, 2, 4, 4, 1, 2, 7, 5, 5, 1, 6, 8, 6, 0, 8, 4, 2, 4, 5, 4, 3, 3, 2, 8, 9, 5, 2, 2, 6, 8, 7, 4, 2, 0, 8, 6, 6, 4, 6, 1, 6, 4, 8, 9, 8, 8, 8, 1, 9, 4, 0, 6, 3, 8, 9, 3, 3, 4, 5, 3, 5, 9, 0, 1, 5, 8, 7, 3, 2, 6, 0, 6, 9, 4, 5, 7, 3, 4, 8, 8, 2, 3, 8, 2, 0
Offset: 1

Views

Author

Keywords

Comments

Psi(x) is the digamma function (logarithmic derivative of the Gamma function).

Examples

			-1.2395972796176185082441275516860842454332895226874208...
		

Crossrefs

Programs

  • MATLAB
    format long; psi(log(2))
  • Maple
    evalf(Psi(ln(2)), 120);
  • Mathematica
    RealDigits[PolyGamma[Log[2]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); psi(log(2))
    

A020004 Nearest integer to Gamma(n + 1/12)/Gamma(1/12).

Original entry on oeis.org

1, 0, 0, 0, 1, 2, 12, 73, 519, 4193, 38084, 384010, 4256112, 51428023, 672849973, 9475970455, 142929221024, 2298778304796, 39270796040273, 710146895061598, 13551969914092152, 272168729108017393, 5738224038694033364
Offset: 0

Views

Author

Keywords

Examples

			Gamma(0 + 1/12)/Gamma(1/12) = 1, so a(0) = 1.
Gamma(1 + 1/12)/Gamma(1/12) = 1/12 = 0.08333..., so a(1) = 0.
Gamma(2 + 1/12)/Gamma(1/12) = 13/144 < 1/2, so a(2) = 0.
Gamma(3 + 1/12)/Gamma(1/12) = 325/1728 < 1/2, so a(3) = 0.
Gamma(4 + 1/12)/Gamma(1/12) = 12025/20736 = 0.5799..., so a(4) = 1.
Gamma(5 + 1/12)/Gamma(1/12) = 589225/248832 = 2.3679631237..., so a(5) = 2.
Gamma(6 + 1/12)/Gamma(1/12) = 35942725/2985984 = 12.037145878879458..., so a(6) = 12.
Gamma(7 + 1/12)/Gamma(1/12) = 2623818925/35831808 = 73.22597..., so a(7) = 73.
		

Crossrefs

Cf. A020049, A020094, A021016 (decimal expansion of 1/12), A203140 (decimal expansion of Gamma(1/12)).

Programs

  • Magma
    [Round(Gamma(n +1/12)/Gamma(1/12)): n in [0..30]]; // G. C. Greubel, Jan 19 2018
  • Maple
    Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
  • Mathematica
    Table[Round[Gamma[n + 1/12]/Gamma[1/12]], {n, 0,50}] (* G. C. Greubel, Jan 19 2018 *)
  • PARI
    for(n=0,30, print1(round(gamma(n+1/12)/gamma(1/12)), ", ")) \\ G. C. Greubel, Jan 19 2018
    

A272097 Decimal expansion of an infinite product involving the ratio of n! to its Stirling approximation.

Original entry on oeis.org

1, 0, 0, 2, 6, 8, 7, 9, 1, 3, 2, 4, 1, 5, 2, 7, 9, 4, 1, 5, 8, 4, 3, 4, 5, 5, 4, 6, 4, 3, 4, 5, 2, 0, 9, 6, 1, 8, 1, 8, 1, 0, 4, 0, 3, 1, 9, 2, 3, 6, 7, 8, 8, 8, 3, 7, 2, 8, 6, 6, 5, 6, 7, 3, 8, 0, 6, 4, 7, 7, 8, 5, 0, 6, 2, 1, 1, 1, 0, 0, 7, 3, 8, 5, 3, 8, 1, 0, 9, 5, 8, 8, 6, 6, 7, 8, 2, 6, 3, 5, 8, 8, 0, 1, 9
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 20 2016

Keywords

Comments

Product_{k=1..n} (k! / (sqrt(2*Pi*k) * k^k * exp(-k))) ~ c * n^(1/12), where c = exp(1/12)*(2*Pi)^(1/4) / A^2 = A213080 = 1.04633506677050318098095065697776..., where A = A074962 is the Glaisher-Kinkelin constant.
Product_{n>=1} (n! / (sqrt(2*Pi*n) * n^n * exp(-n) * (1 + 1/(12*n) + 1/(288*n^2)))) = exp(1/12) * (2*Pi)^(1/4) * abs(Gamma(25/24 + i/24))^2 / A^2 = 0.997305599490607358564533726617761207426462854447669845..., where A = A074962 is the Glaisher-Kinkelin constant and i is the imaginary unit.

Examples

			1.00268791324152794158434554643452096181810403192367888372866567380647785...
		

Crossrefs

Programs

  • Mathematica
    Product[n!/(n^n/E^n*Sqrt[2*Pi*n]*(1 + 1/(12*n))), {n, 1, Infinity}]
    RealDigits[E^(1/12)*(2*Pi)^(1/4)*Gamma[13/12]/Glaisher^2, 10, 120][[1]]

Formula

Product_{n>=1} (n! / (sqrt(2*Pi*n) * n^n * exp(-n) * (1 + 1/(12*n)))).
Equals exp(1/12) * (2*Pi)^(1/4) * Gamma(1/12) / (12 * A^2), where A = A074962 is the Glaisher-Kinkelin constant.
Showing 1-10 of 12 results. Next