A203148 (n-1)-st elementary symmetric function of {3,9,...,3^n}.
1, 12, 351, 29160, 7144929, 5223002148, 11433166050879, 75035879252272080, 1477081305957768349761, 87223128348206814118735932, 15451489966710801620870785316511, 8211586182553137756809552940033725880, 13091937140529934508508023103481190655434529
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..60
Programs
-
Magma
[(1/2)*(3^n -1)*3^(Binomial(n,2)): n in [1..20]]; // G. C. Greubel, Feb 24 2021
-
Mathematica
f[k_]:= 3^k; t[n_]:= Table[f[k], {k, 1, n}]; a[n_]:= SymmetricPolynomial[n - 1, t[n]]; Table[a[n], {n, 1, 16}] (* A203148 *) Table[1/2 (3^n - 1) 3^Binomial[n, 2], {n, 1, 20}] (* Emanuele Munarini, Sep 14 2017 *)
-
Sage
[(1/2)*(3^n -1)*3^(binomial(n,2)) for n in (1..20)] # G. C. Greubel, Feb 24 2021
Formula
a(n) = (1/2)*(3^n-1)*3^(binomial(n,2)). - Emanuele Munarini, Sep 14 2017
Comments