A203162 (n-1)-st elementary symmetric function of the first n terms of (1,2,3,1,2,3,1,2,3,...).
1, 3, 11, 17, 40, 132, 168, 372, 1188, 1404, 3024, 9504, 10800, 22896, 71280, 79056, 165888, 513216, 559872, 1166400, 3592512, 3872448, 8024832, 24634368, 26313984, 54307584, 166281984, 176359680, 362797056, 1108546560, 1169012736
Offset: 1
Examples
Let esf abbreviate "elementary symmetric function". Then 0th esf of {1}: 1; 1st esf of {1,2}: 1+2=3; 2nd esf of {1,2,3} is 1*2+1*3+2*3=11.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,12,0,0,-36).
Programs
-
GAP
a:=[1, 3, 11, 17, 40, 132];; for n in [7..40] do a[n]:=12*a[n-1]-36*a[n-2]-a[n-3]; od; a; # G. C. Greubel, May 10 2019
-
Magma
I:=[1, 3, 11, 17, 40, 132]; [n le 6 select I[n] else 12*Self(n-3) -36*Self(n-6): n in [1..40]]; // G. C. Greubel, May 10 2019
-
Mathematica
f[k_] := 1 + Mod[k + 2, 3]; t[n_] := Table[f[k], {k, n}]; a[n_] := SymmetricPolynomial[n - 1, t[n]]; Table[a[n], {n, 40}] (* A203162 *) Rest[CoefficientList[Series[x*(1 + 3*x + 11*x^2 + 5*x^3 + 4*x^4)/(1 - 6*x^3)^2, {x, 0, 30}], x]] (* Vaclav Kotesovec, May 10 2019 *)
-
PARI
my(x='x+O('x^40)); Vec(x*(1+3*x+11*x^2+5*x^3+4*x^4)/(1-6*x^3)^2) \\ G. C. Greubel, May 10 2019
-
Sage
a=(x*(1+3*x+11*x^2+5*x^3+4*x^4)/(1-6*x^3)^2).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 10 2019
Formula
a(n) = 12*a(n-3)-36*a(n-6). - Clark Kimberling, Aug 18 2012
G.f.: x*(1 + 3*x + 11*x^2 + 5*x^3 + 4*x^4)/(1 - 6*x^3)^2. - Clark Kimberling, Aug 18 2012; corrected by Georg Fischer, May 10 2019
Comments