A203182 Primes p such that A008472(p-1) = A008472(p+1), where A008472 = sum of distinct primes dividing n.
3, 18913, 24733, 29633, 32429, 42719, 45751, 46103, 61409, 117991, 149351, 171529, 174019, 176017, 223099, 294893, 326369, 363691, 421727, 423503, 434237, 472631, 658579, 678077, 686423, 706841, 735901, 770059, 771629, 906949, 936827, 937571, 1073447, 1256029
Offset: 1
Keywords
Examples
18913 is in the sequence because: sum of the distinct prime divisors of 18912 = 2+3+197 = 202; sum of the distinct prime divisors of 18914 = 2+7+193 = 202.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..2000
Programs
-
Maple
with(numtheory):for n from 1 to 100000 do:p:=ithprime(n):p1:=p-1: p2:=p+1:t1:=ifactors(p1)[2]; t11 := sum(t1[i][1], i=1..nops(t1)):t2:=ifactors(p2)[2]; t22 := sum(t2[i][1], i=1..nops(t2)):if t11=t22 then printf(`%d, `,p):else fi:od:
-
Mathematica
Select[Prime[Range[100000]],Total[Transpose[FactorInteger[#-1]][[1]]] == Total[Transpose[FactorInteger[#+1]][[1]]]&] (* Harvey P. Dale, Sep 22 2013 *)
Comments