cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203253 L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} x^n/n * exp( Sum_{k>=1} a(n*k)*x^(n*k)/k ).

Original entry on oeis.org

1, 3, 7, 23, 51, 195, 435, 1631, 4165, 14563, 34761, 141479, 327471, 1222287, 3267177, 11804959, 28562075, 114349947, 272702593, 1056583023, 2786781123, 9966908779, 24678676437, 101422669199, 243331437901, 915276550503, 2464145600011, 9064045943983, 22324762587821
Offset: 1

Views

Author

Paul D. Hanna, Dec 30 2011

Keywords

Comments

L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} G_n(x^n)*x^n/n where G_n(x) = exp( Sum_{k>=1} a(n*k)*x^k/k ) are integer series.

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 23*x^4/4 + 51*x^5/5 + 195*x^6/6 +...
L.g.f.: L(x) = Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} G_n(x^n)*x^n/n
where G_n(x) = exp( Sum_{k>=1} a(n*k)*x^k/k ), which begin:
G_1(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 22*x^5 + 62*x^6 + 146*x^7 +...
G_2(x) = 1 + 3*x + 16*x^2 + 104*x^3 + 724*x^4 + 5428*x^5 + 44080*x^6 +...;
G_3(x) = 1 + 7*x + 122*x^2 + 2128*x^3 + 52330*x^4 + 1109386*x^5 +...;
G_4(x) = 1 + 23*x + 1080*x^2 + 67944*x^3 + 4595792*x^4 +...;
G_5(x) = 1 + 51*x + 8582*x^2 + 1482524*x^3 + 355949360*x^4 +...;
G_6(x) = 1 + 195*x + 89752*x^2 + 53146664*x^3 + 36695632888*x^4 +...;
G_7(x) = 1 + 435*x + 705756*x^2 + 1208493276*x^3 +...;
G_8(x) = 1 + 1631*x + 7232560*x^2 + 44157620896*x^3 ...; ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(L=vector(n,i,1));for(i=1,n,L=Vec(deriv(sum(m=1,n,x^m/m*exp(sum(k=1,floor(n/m),L[m*k]*x^(m*k)/k)+x*O(x^n))))));L[n]}

Formula

Equals the logarithmic derivative of A203254.