cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203263 Primes p such that 29*p + 14 and 41*p + 20 are also prime.

Original entry on oeis.org

61, 103, 127, 271, 313, 331, 373, 457, 547, 571, 577, 613, 877, 967, 997, 1201, 1423, 1597, 2251, 2287, 2311, 2713, 2791, 2887, 3307, 3433, 3511, 3697, 3733, 3847, 4261, 4327, 4363, 4483, 4861, 4951, 5023, 5407, 5563, 5743, 6553, 6571, 6781, 6991, 7177, 7333
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 13 2012

Keywords

Comments

p*(p + 1)/2 is the first number in a set of three triangular numbers with prime indices in arithmetic progression with difference 420*p*(p + 1) + 105. - Arkadiusz Wesolowski, Oct 29 2013

References

  • Wacław Sierpiński, 200 zadan z elementarnej teorii liczb, Warsaw: PZWS, 1964, pp. 12, 61.
  • Wacław Sierpiński, 250 Problems in Elementary Number Theory. (Modern Analytic and Computational Methods in Science and Mathematics, No. 26), American Elsevier Publishing Co., Inc., New York; PWN Polish Scientific Publishers, Warsaw, 1970, pp. 7, 50.

Crossrefs

Cf. A034953.

Programs

  • Magma
    [p : p in PrimesUpTo(7333) | IsPrime(29*p+14) and IsPrime(41*p+20)]; // Arkadiusz Wesolowski, Oct 29 2013
  • Mathematica
    lst = {}; Do[p = Prime[n]; If[PrimeQ[29*p + 14] && PrimeQ[41*p + 20], AppendTo[lst, p]], {n, 10^3}]; lst
    Select[Prime[Range[1000]],AllTrue[{29#+14,41#+20},PrimeQ]&] (* Harvey P. Dale, Oct 05 2022 *)