A203263 Primes p such that 29*p + 14 and 41*p + 20 are also prime.
61, 103, 127, 271, 313, 331, 373, 457, 547, 571, 577, 613, 877, 967, 997, 1201, 1423, 1597, 2251, 2287, 2311, 2713, 2791, 2887, 3307, 3433, 3511, 3697, 3733, 3847, 4261, 4327, 4363, 4483, 4861, 4951, 5023, 5407, 5563, 5743, 6553, 6571, 6781, 6991, 7177, 7333
Offset: 1
Keywords
References
- Wacław Sierpiński, 200 zadan z elementarnej teorii liczb, Warsaw: PZWS, 1964, pp. 12, 61.
- Wacław Sierpiński, 250 Problems in Elementary Number Theory. (Modern Analytic and Computational Methods in Science and Mathematics, No. 26), American Elsevier Publishing Co., Inc., New York; PWN Polish Scientific Publishers, Warsaw, 1970, pp. 7, 50.
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A034953.
Programs
-
Magma
[p : p in PrimesUpTo(7333) | IsPrime(29*p+14) and IsPrime(41*p+20)]; // Arkadiusz Wesolowski, Oct 29 2013
-
Mathematica
lst = {}; Do[p = Prime[n]; If[PrimeQ[29*p + 14] && PrimeQ[41*p + 20], AppendTo[lst, p]], {n, 10^3}]; lst Select[Prime[Range[1000]],AllTrue[{29#+14,41#+20},PrimeQ]&] (* Harvey P. Dale, Oct 05 2022 *)
Comments