A219085 a(n) = floor((n + 1/2)^3).
0, 3, 15, 42, 91, 166, 274, 421, 614, 857, 1157, 1520, 1953, 2460, 3048, 3723, 4492, 5359, 6331, 7414, 8615, 9938, 11390, 12977, 14706, 16581, 18609, 20796, 23149, 25672, 28372, 31255, 34328, 37595, 41063, 44738, 48627, 52734, 57066
Offset: 0
Examples
Let p=1/3. Then 3^p=1.44... and 4^p=1.58..., so 3 is a jump point. 15^p=2.46... and 16^p=2.51..., so 15 is a jump point.
Links
- Clark Kimberling, Table of n, a(n) for n = 0..10000
- Clark Kimberling, Unsolved Problems and Rewards, Problem 21.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1,1,-3,3,-1).
Programs
-
Mathematica
Table[Floor[(n + 1/2)^3], {n, 0, 100}]
-
PARI
a(n)=n^3 + (6*n^2 + 3*n)\4 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = floor((n + 1/2)^3).
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +a(n-4) -3*a(n-5) +3*a(n-6) -a(n-7).
G.f.: (3*x +6*x^2 +6*x^3 +7*x^4 +x^5 +x^6)/(u*v), where u = (1 - x)^4, v = 1 + x + x^2 + x^3.
a(n) = (n + 1/2)^3 + (2*i^(n*(n-1))+(-1)^n-4)/8, where i=sqrt(-1). - Bruno Berselli, Dec 21 2012
Comments