cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A219086 a(n) = floor((n + 1/2)^4).

Original entry on oeis.org

0, 5, 39, 150, 410, 915, 1785, 3164, 5220, 8145, 12155, 17490, 24414, 33215, 44205, 57720, 74120, 93789, 117135, 144590, 176610, 213675, 256289, 304980, 360300, 422825, 493155, 571914, 659750, 757335, 865365, 984560, 1115664
Offset: 0

Views

Author

Clark Kimberling, Jan 01 2013

Keywords

Comments

a(n) is the number k such that {k^p} < 1/2 < {(k+1)^p}, where p = 1/4 and { } = fractional part. Equivalently, the jump sequence of f(x) = x^(1/4), in the sense that these are the nonnegative integers k for which round(k^p) < round((k+1)^p). For details and a guide to related sequences, see A219085.
-4*a(n) gives the real part of (n+n*i)*((n+1)+n*i)*(n+(n+1)*i)*((n+1)+(n+1)*i). The imaginary part is always zero. - Jon Perry, Feb 05 2014
Numbers k such that 16*k+1 is a fourth power. - Bruno Berselli, May 29 2018
The row sums of "Floyd's Triangle", which is a triangular array of natural numbers beginning with the number 1, produce the sequence A006003. A006003 can be bisected to get the Rhombic Dodecahedron Sequence A005917, whose n-th partial sum is n^4, and A317297, whose n-th partial sum is a(n). Interleave n^4 or A000583 back with {a(n)} to get A011863, whose first differences are A019298. Finally, A011863(n)-A011863(n-2) = A006003(n-1). - Bruce J. Nicholson, Dec 22 2019

Examples

			0^(1/4) = 0.000...; 1^(1/4) = 1.000...
5^(1/4) = 1.495...; 6^(1/4) = 1.565...
39^(1/4) = 2.499...; 40^(1/4) = 2.514...
		

Crossrefs

Programs

Formula

G.f.: (5*x^3 + 14*x^2 + 5*x)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = (2*n^4 + 4*n^3 + 3*n^2 + n)/2. - J. M. Bergot, Apr 05 2014
a(n) = Sum_{i=0..n} i*(4*i^2 + 1) = n*(n + 1)*(2*n^2 + 2*n + 1)/2. - Bruno Berselli, Feb 09 2017
a(n) = lcm((2*n + 1)^2 - 1, (2*n + 1)^2 + 1)/8 for n>=1. - Lechoslaw Ratajczak, Mar 26 2017
a(n) = A000217(n) * A001844(n). - Bruce J. Nicholson, May 14 2017
E.g.f.: (1/2)*exp(x)*x*(10 + 29*x + 16*x^2 + 2*x^3). - Stefano Spezia, Dec 27 2019
a(n) = ((2*n+1)^4 - 1)/16. - Jianing Song, Jan 03 2023
Sum_{n>=1} 1/a(n) = 6 - 2*Pi*tanh(Pi/2). - Amiram Eldar, Jan 08 2023

A084188 a(0)=1, a(n+1) = 2*a(n) + b(n+2), where b(n)=A004539(n) is the n-th bit in the binary expansion of sqrt(2).

Original entry on oeis.org

1, 2, 5, 11, 22, 45, 90, 181, 362, 724, 1448, 2896, 5792, 11585, 23170, 46340, 92681, 185363, 370727, 741455, 1482910, 2965820, 5931641, 11863283, 23726566, 47453132, 94906265, 189812531, 379625062, 759250124
Offset: 0

Views

Author

Ralf Stephan, May 18 2003

Keywords

Comments

Numerators in approximation sqrt(2) ~ a(n)/2^n.
a(n) is the number k such that {log_2(k)} < 1/2 < {log_2(k+1)}, where { } = fractional part. Equivalently, the jump sequence of f(x) = log_2(x), in the sense that these are the positive integers k for which round(log_2(k)) < round(log_2(k+1)); see A219085. - Clark Kimberling, Jan 01 2013
Largest k such that k^2 <= 2^(2n + 1). - Irina Gerasimova, Jul 07 2013

Crossrefs

Programs

  • Haskell
    a084188 n = a084188_list !! n
    a084188_list = scanl1 (\u v -> 2 * u + v) a004539_list
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Magma
    [Isqrt(2^(2*n+1)):n in[0..40]]; // Jason Kimberley, Oct 25 2016
    
  • Maple
    A084188 := n->floor(sqrt(2)*2^n); # Peter Luschny, Sep 20 2011
  • Mathematica
    Table[Floor[Sqrt[2] 2^n],{n,0,30}] (* Harvey P. Dale, Aug 15 2013 *)
  • PARI
    a(n)=floor(sqrt(2)<Charles R Greathouse IV, Sep 22 2011
    
  • PARI
    {a(n) = sqrtint(2*4^n)}; /* Michael Somos, Oct 29 2016 */
    
  • Python
    from math import isqrt
    def A084188(n): return isqrt(1<<(n<<1)+1) # Chai Wah Wu, Jan 24 2024

Formula

a(n) = floor(sqrt(2)*2^n).
a(n) = A017910(2*n+1). - Peter Luschny, Sep 20 2011

A219087 a(n) = floor((n + 1/2)^(4/3)).

Original entry on oeis.org

0, 1, 3, 5, 7, 9, 12, 14, 17, 20, 22, 25, 29, 32, 35, 38, 42, 45, 48, 52, 56, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 112, 116, 121, 125, 130, 134, 139, 143, 148, 152, 157, 162, 167, 172, 176, 181, 186, 191, 196, 201, 206, 211, 216, 221, 227
Offset: 0

Views

Author

Clark Kimberling, Jan 01 2013

Keywords

Comments

a(n) is the number k such that {k^p} < 1/2 < {(k+1)^p}, where p = 3/4 and { } = fractional part. Equivalently, the jump sequence of f(x) = x^(3/4), in the sense that these are the nonnegative integers k for which round(k^p) < round((k+1)^p). For details and a guide to related sequences, see A219085.

Crossrefs

Programs

  • Mathematica
    Table[Floor[(n + 1/2)^(4/3)], {n, 0, 100}]

Formula

a(n) = floor((n + 1/2)^(4/3)).

A219088 a(n) = floor((n + 1/2)^5).

Original entry on oeis.org

0, 7, 97, 525, 1845, 5032, 11602, 23730, 44370, 77378, 127628, 201135, 305175, 448403, 640973, 894660, 1222981, 1641308, 2166998, 2819506, 3620506, 4594013, 5766503, 7167031, 8827351, 10782039, 13068609, 15727636, 18802876
Offset: 0

Views

Author

Clark Kimberling, Jan 01 2013

Keywords

Comments

a(n) is the number k such that {k^p} < 1/2 < {(k+1)^p}, where p = 1/5 and { } = fractional part. Equivalently, the jump sequence of f(x) = x^(1/5), in the sense that these are the nonnegative integers k for which round(k^p) < round((k+1)^p). For details and a guide to related sequences, see A219085.

Crossrefs

Cf. A219085.

Programs

  • Mathematica
    Table[Floor[(n + 1/2)^5], {n, 0, 100}]

Formula

a(n) = [(n + 1/2)^5].
G.f.: x*(x^19 +3*x^18 +68*x^17 +106*x^16 +121*x^15 +122*x^14 +120*x^13 +118*x^12 +120*x^11 +123*x^10 +116*x^9 +123*x^8 +120*x^7 +118*x^6 +120*x^5 +122*x^4 +120*x^3 +110*x^2 +62*x +7) / ((x -1)^6*(x +1)*(x^2 +1)*(x^4 +1)*(x^8 +1)). - Colin Barker, Jan 06 2013

A219089 a(n) = floor((n + 1/2)^6).

Original entry on oeis.org

0, 11, 244, 1838, 8303, 27680, 75418, 177978, 377149, 735091, 1340095, 2313060, 3814697, 6053445, 9294114, 13867245, 20179187, 28722900, 40089475, 54980371, 74220378, 98771297, 129746337, 168425239, 216270112, 274941996
Offset: 0

Views

Author

Clark Kimberling, Jan 01 2013

Keywords

Comments

a(n) is the number k such that {k^p} < 1/2 < {(k+1)^p}, where p = 1/6 and { } = fractional part. Equivalently, the jump sequence of f(x) = x^(1/6), in the sense that these are the nonnegative integers k for which round(k^p) < round((k+1)^p). For details and a guide to related sequences, see A219085.

Crossrefs

Cf. A219085.

Programs

  • Mathematica
    Table[Floor[(n + 1/2)^6], {n, 0, 100}]
    LinearRecurrence[{7,-22,42,-57,63,-64,64,-64,64,-64,64,-64,64,-64,64,-63,57,-42,22,-7,1},{0,11,244,1838,8303,27680,75418,177978,377149,735091,1340095,2313060,3814697,6053445,9294114,13867245,20179187,28722900,40089475,54980371,74220378},30] (* Harvey P. Dale, Oct 06 2024 *)

Formula

a(n) = [(n + 1/2)^6].

A219090 a(n) = floor((n + 1/2)^7).

Original entry on oeis.org

0, 17, 610, 6433, 37366, 152243, 490222, 1334838, 3205770, 6983372, 14071004, 26600198, 47683715, 81721509, 134764658, 214942297, 332956585, 502650756, 741655290, 1072117239, 1521517764, 2123582899, 2919292602, 3957993128
Offset: 0

Views

Author

Clark Kimberling, Jan 01 2013

Keywords

Comments

a(n) is the number k such that {k^p} < 1/2 < {(k+1)^p}, where p = 1/7 and { } = fractional part. Equivalently, the jump sequence of f(x) = x^(1/7), in the sense that these are the nonnegative integers k for which round(k^p) < round((k+1)^p). It appears that the sequence is linearly recurrent with order 71. For details and a guide to related sequences, see A219085.

Crossrefs

Cf. A219085.

Programs

  • Mathematica
    Table[Floor[(n + 1/2)^7], {n, 0, 100}]

Formula

a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) + a(n-64) - 7*a(n-65) + 21*a(n-66) - 35*a(n-67) + 35*a(n-68) - 21*a(n-69) + 7*a(n-70) - a(n-71). - Wesley Ivan Hurt, Jun 18 2022

A219091 a(n) = floor((n + 1/2)^8).

Original entry on oeis.org

0, 25, 1525, 22518, 168151, 837339, 3186448, 10011291, 27249052, 66342043, 147745544, 305902286, 596046447, 1103240376, 1954087550, 3331605615, 5493783665, 8796388244, 13720622866, 20906286173, 31191114176, 45657032334
Offset: 0

Views

Author

Clark Kimberling, Jan 01 2013

Keywords

Comments

a(n) is the number k such that {k^p} < 1/2 < {(k+1)^p}, where p = 1/8 and { } = fractional part. Equivalently, the jump sequence of f(x) = x^(1/8), in the sense that these are the nonnegative integers k for which round(k^p) < round((k+1)^p). It appears that the sequence is linearly recurrent with order 23. Compare its signature with row 9 of the triangle at A008949. For which values of p is there a match of this sort between the jump sequence of x^p and row p+1 of the triangle?
For details and a guide to related sequences, see A219085.

Crossrefs

Programs

  • Mathematica
    Table[Floor[(n + 1/2)^8], {n, 0, 100}]

A219092 a(n) = floor(e^(n + 1/2)).

Original entry on oeis.org

1, 4, 12, 33, 90, 244, 665, 1808, 4914, 13359, 36315, 98715, 268337, 729416, 1982759, 5389698, 14650719, 39824784, 108254987, 294267566, 799902177, 2174359553, 5910522063, 16066464720, 43673179097, 118716009132, 322703570371
Offset: 0

Views

Author

Clark Kimberling, Jan 01 2013

Keywords

Comments

a(n) is the number k such that {log(k)} < 1/2 < {log(k+1)}, where { } = fractional part. Equivalently, the jump sequence of f(x) = log(x), in the sense that these are the positive integers k for which round(log(k)) < round(log(k+1)). For a guide to related sequences, see A219085.

Examples

			log(1) = 0.000... ; log(2) = 0.693...
log(4) = 1.386... ; log(5) = 1.609...
log(12) = 2.484... ; log(13) = 2.564...
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[E^(n + 1/2)], {n, 0, 100}]

Formula

a(n) = [e^(n + 1/2)].
Showing 1-8 of 8 results.