cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A203305 Vandermonde determinant of the first n terms of (1,3,7,15,31,...).

Original entry on oeis.org

1, 2, 48, 64512, 20808990720, 6658450862270054400, 8590449816558320728896700416000, 180165778137909187135292776823951671626301440000, 246665746050863452218796304775365273357060390005370386894553088000000
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2012

Keywords

Comments

Each term divides its successor, as in A028365 and A203307.

Crossrefs

Programs

  • Magma
    [1] cat [(&*[(&*[2^(k+1) - 2^j: j in [1..k]]): k in [1..n-1]]): n in [2..15]]; // G. C. Greubel, Aug 30 2023
    
  • Mathematica
    (* First program *)
    f[j_]:= 2^j - 1; z = 15;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    Table[v[n], {n,z}]         (* A203305 *)
    Table[v[n+1]/v[n], {n,z}]  (* A028365 *)
    %/2                         (* A203307 *)
    (* Second program *)
    Table[(-1)^n * 2^(n*(n+1)*(2*n+1)/6 - 1) / QPochhammer[2, 2, n] * Product[QPochhammer[1/2^k, 2, k], {k, 2, n}], {n, 10}] (* Vaclav Kotesovec, Feb 18 2021 *)
  • SageMath
    [product(product(2^k - 2^j for j in range(1,k)) for k in range(2,n+1)) for n in range(1,16)] # G. C. Greubel, Aug 30 2023

Formula

a(n) = Product_{k=1..n-1} Product_{j=1..k} (2^(k+1) - 2^j).
From Vaclav Kotesovec, Feb 18 2021: (Start)
a(n) = (-1)^n * (2^(n*(n+1)*(2*n+1)/6 - 1) / QPochhammer(2,2,n)) * Product_{k=2..n} QPochhammer(1/2^k, 2, k).
a(n) ~ 2^(n*(n^2 - 1)/3) * QPochhammer(1/2)^n / A335011. (End)
a(n) = Product_{k=2..n} ( 2^(k+1)^2 * QPochhammer(2^(-k-1), 2, k+1) )/ (2^(k+1) - 1). - G. C. Greubel, Aug 30 2023

A203480 a(n) = v(n+1)/v(n), where v = A203479.

Original entry on oeis.org

4, 80, 6336, 1901824, 2167925760, 9505110118400, 162323441859870720, 10902076148767162433536, 2898720791385603198124032000, 3064112360434477703904869089280000, 12909951234577776926559241120412860416000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    [(&*[2^j +2^(n+1) -2: j in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 28 2023
    
  • Mathematica
    (* First program *)
    f[j_]:= 2^j - 1; z = 15;
    v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
    Table[v[n], {n,z}]               (* A203479 *)
    Table[v[n+1]/v[n], {n,z-1}]      (* A203480 *)
    Table[v[n+1]/(4*v[n]), {n,z-1}]  (* A203481 *)
    (* Second program *)
    Table[Product[2^(n+1) +2^k -2, {k,n}], {n,20}] (* G. C. Greubel, Aug 28 2023 *)
  • SageMath
    [product(2^j+2^(n+1)-2 for j in range(1,n+1)) for n in range(1,21)] # G. C. Greubel, Aug 28 2023

Formula

a(n) = Product_{k=1..n} (2^k + 2^(n+1) - 2). - G. C. Greubel, Aug 28 2023
a(n) ~ c * 2^(n*(n+1)), where c = 1/QPochhammer(1/2, 1/4) = A079555 = 2.3842310290313717... - Vaclav Kotesovec, Aug 09 2025

A203478 a(n) = v(n+1)/v(n), where v = A203477.

Original entry on oeis.org

3, 30, 1080, 146880, 77552640, 161309491200, 1331771159347200, 43809944057885491200, 5753472333233985788313600, 3019422280481195741706977280000, 6335279362770913356551778761441280000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    [(&*[2^j + 2^n: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 28 2023
    
  • Mathematica
    (* First program *)
    f[j_]:= 2^(j-1); z = 13;
    v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
    Table[v[n], {n,z}]                       (* A203477 *)
    Table[v[n+1]/v[n], {n,z-1}]              (* A203478 *)
    Table[v[n]*v[n+2]/(2*v[n+1]^2), {n,22}]  (* A164051 *)
    (* Second program *)
    Table[Product[2^j +2^n, {j,0,n-1}], {n,20}] (* G. C. Greubel, Aug 28 2023 *)
  • PARI
    a(n)=prod(i=0,n-1,2^i+2^n) \\ Charles R Greathouse IV, Feb 16 2021
    
  • SageMath
    [product(2^j + 2^n for j in range(n)) for n in range(1,21)] # G. C. Greubel, Aug 28 2023

Formula

a(n) = A028362(n+1) * 2^(n*(n-1)/2). - Charles R Greathouse IV, Feb 16 2021
a(n) = Product_{j=0..n-1} (2^j + 2^n). - G. C. Greubel, Aug 28 2023
Showing 1-3 of 3 results.