cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A203307 a(n) = v(n+1)/(2*v(n)), where v = A203305.

Original entry on oeis.org

1, 12, 672, 161280, 159989760, 645078712320, 10486399547473920, 684552162459097497600, 179100751368498596492083200, 187617350297573441752474740326400, 786539962489104046627462744981792358400
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2012

Keywords

Crossrefs

Programs

  • Magma
    [(&*[2^(n+1) - 2^(j+1): j in [0..n-1]])/2: n in [1..20]]; // G. C. Greubel, Aug 31 2023
    
  • Mathematica
    (* First program *)
    f[j_]:= 2^j - 1; z = 15;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    Table[v[n], {n,z}]         (* A203305 *)
    Table[v[n+1]/v[n], {n,z}]  (* A028365 *)
    %/2                         (* A203307 *)
    (* Second program *)
    Table[(-1)^n*2^Binomial[n+1,2]*QPochhammer[2,2,n]/2, {n,20}] (* G. C. Greubel, Aug 31 2023 *)
  • SageMath
    [product(2^(n+1) - 2^(k+1) for k in range(n))/2 for n in range(1,21)] # G. C. Greubel, Aug 31 2023

Formula

a(n) = (1/2)*A028365(n) for n>0.
a(n) = (-1)^n * 2^(binomial(n+1,2) - 1) * QPochhammer(2,2,n). - G. C. Greubel, Aug 31 2023

A203465 a(n) = A203305(n)/A000178(n) where A000178 are superfactorials.

Original entry on oeis.org

1, 2, 24, 5376, 72253440, 192663508746240, 345230911480770991226880, 1436598918224589625071929521581588480, 48781096034575545526663437061892218092260229434572800
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Cf. A203305.

Programs

  • Magma
    F:= Factorial; [1] cat [(&*[(&*[2^(k+1) - 2^(j): j in [1..k]])/Factorial(k): k in [1..n-1]]): n in [2..20]]; // G. C. Greubel, Sep 19 2023
    
  • Mathematica
    f[j_]:= 2^j - 1; z = 10;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    d[n_]:= Product[(i-1)!, {i,n}]
    Table[v[n], {n,z}]         (* A203305 *)
    Table[v[n]/d[n], {n,z}]    (* A203465 *)
  • SageMath
    f=factorial; [product(product(2^(k+1) - 2^j for j in range(1, k+1))//factorial(k) for k in range(1, n)) for n in range(1,21)] // G. C. Greubel, Sep 19 2023

Extensions

Name edited by Michel Marcus, May 17 2019

A093883 Product of all possible sums of two distinct numbers taken from among first n natural numbers.

Original entry on oeis.org

1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1

Views

Author

Amarnath Murthy, Apr 22 2004

Keywords

Comments

From Clark Kimberling, Jan 02 2013: (Start)
Each term divides its successor, as in A006963, and by the corresponding superfactorial, A000178(n), as in A203469.
Abbreviate "Vandermonde" as V. The V permanent of a set S={s(1),s(2),...,s(n)} is a product of sums s(j)+s(k) in analogy to the V determinant as a product of differences s(k)-s(j). Let D(n) and P(n) denote the V determinant and V permanent of S, and E(n) the V determinant of the numbers s(1)^2, s(2)^2, ..., s(n)^2; then P(n) = E(n)/D(n). This is one of many divisibility properties associated with V determinants and permanents. Another is that if S consists of distinct positive integers, then D(n) divides D(n+1) and P(n) divides P(n+1).
Guide to related sequences:
...
s(n).............. D(n)....... P(n)
n................. A000178.... (this)
n+1............... A000178.... A203470
n+2............... A000178.... A203472
n^2............... A202768.... A203475
2^(n-1)........... A203303.... A203477
2^n-1............. A203305.... A203479
n!................ A203306.... A203482
n(n+1)/2.......... A203309.... A203511
Fibonacci(n+1).... A203311.... A203518
prime(n).......... A080358.... A203521
odd prime(n)...... A203315.... A203524
nonprime(n)....... A203415.... A203527
composite(n)...... A203418.... A203530
2n-1.............. A108400.... A203516
n+floor(n/2)...... A203430
n+floor[(n+1)/2].. A203433
1/n............... A203421
1/(n+1)........... A203422
1/(2n)............ A203424
1/(2n+2).......... A203426
1/(3n)............ A203428
Generalizing, suppose that f(x,y) is a function of two variables and S=(s(1),s(2),...s(n)). The phrase, "Vandermonde sequence using f(x,y) applied to S" means the sequence a(n) whose n-th term is the product f(s(j,k)) : 1<=j
...
If f(x,y) is a (bivariate) cyclotomic polynomial and S is a strictly increasing sequence of positive integers, then a(n) consists of integers, each of which divides its successor. Guide to sequences for which f(x,y) is x^2+xy+y^2 or x^2-xy+y^2 or x^2+y^2:
...
s(n) ............ x^2+xy+y^2.. x^2-xy+y^2.. x^2+y^2
n ............... A203012..... A203312..... A203475
n+1 ............. A203581..... A203583..... A203585
2n-1 ............ A203514..... A203587..... A203589
n^2 ............. A203673..... A203675..... A203677
2^(n-1) ......... A203679..... A203681..... A203683
n! .............. A203685..... A203687..... A203689
n(n+1)/2 ........ A203691..... A203693..... A203695
Fibonacci(n) .... A203742..... A203744..... A203746
Fibonacci(n+1) .. A203697..... A203699..... A203701
prime(n) ........ A203703..... A203705..... A203707
floor(n/2) ...... A203748..... A203752..... A203773
floor((n+1)/2) .. A203759..... A203763..... A203766
For f(x,y)=x^4+y^4, see A203755 and A203770. (End)

Examples

			a(4) = (1+2)*(1+3)*(1+4)*(2+3)*(2+4)*(3+4) = 12600.
		

References

  • Amarnath Murthy, Another combinatorial approach towards generalizing the AM-GM inequality, Octagon Mathematical Magazine, Vol. 8, No. 2, October 2000.
  • Amarnath Murthy, Smarandache Dual Symmetric Functions And Corresponding Numbers Of The Type Of Stirling Numbers Of The First Kind. Smarandache Notions Journal, Vol. 11, No. 1-2-3 Spring 2000.

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i+j, i=1..j-1), j=2..n):
    seq(a(n), n=1..12);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    f[n_] := Product[(j + k), {k, 2, n}, {j, 1, k - 1}]; Array[f, 10] (* Robert G. Wilson v, Jan 08 2013 *)
  • PARI
    A093883(n)=prod(i=1,n,(2*i-1)!/i!)  \\ M. F. Hasler, Nov 02 2012

Formula

Partial products of A006963: a(n) = Product((2*i-1)!/i!, i=1..n). - Vladeta Jovovic, May 27 2004
G.f.: G(0)/(2*x) -1/x, where G(k)= 1 + 1/(1 - 1/(1 + 1/((2*k+1)!/(k+1)!)/x/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 15 2013
a(n) ~ sqrt(A/Pi) * 2^(n^2 + n/2 - 7/24) * exp(-3*n^2/4 + n/2 - 1/24) * n^(n^2/2 - n/2 - 11/24), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Jan 26 2019

Extensions

More terms from Vladeta Jovovic, May 27 2004

A028365 Order of general affine group over GF(2), AGL(n,2).

Original entry on oeis.org

1, 2, 24, 1344, 322560, 319979520, 1290157424640, 20972799094947840, 1369104324918194995200, 358201502736997192984166400, 375234700595146883504949480652800, 1573079924978208093254925489963584716800
Offset: 0

Keywords

Comments

For n > 0, a(n) = v(n+1)/v(n), where v = A203305 is the Vandermonde determinant of the first n of the numbers -2^j - 1; see the Mathematica section. - Clark Kimberling, Jan 01 2012

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 54 (1.64).

Programs

  • Magma
    [1] cat [(&*[2^(n+1) - 2^(j+1): j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 31 2023
    
  • Maple
    A028365 := n->2^n*product(2^n-2^'i','i'=0..n-1); # version 1
    A028365 := n->product(2^'j'-1,'j'=1..n)*2^binomial(n+1,2); # version 2
  • Mathematica
    RecurrenceTable[{a[1]==1, a[2]==2, a[3]==24, a[n]==(6a[n-1]^2 a[n-3] - 8a[n-1] a[n-2]^2)/(a[n-2] a[n-3])}, a[n], {n,20}] (* Harvey P. Dale, Aug 03 2011 *)
    (* Next, the connection with Vandermonde determinants *)
    f[j_]:= 2^j - 1; z = 15;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    Table[v[n], {n,z}]   (* A203303 *)
    Table[v[n+1]/v[n], {n,z}]  (* A028365 *)
    Table[v[n]*v[n+2]/(2*v[n+1])^2, {n,z}]  (* A171499 *) (* Clark Kimberling, Jan 01 2011 *)
    Table[(-1)^n*2^Binomial[n+1,2]*QPochhammer[2,2,n], {n,0,20}] (* G. C. Greubel, Aug 31 2023 *)
  • PARI
    a(n)=if(n<0,0,prod(k=1,n,2^k-1)*2^((n^2+n)/2)) /* Michael Somos, May 09 2005 */
    
  • SageMath
    [product(2^(n+1) - 2^(k+1) for k in range(n)) for n in range(21)] # G. C. Greubel, Aug 31 2023

Formula

a(n) is asymptotic to C*2^(n*(n+1)) where C = 0.288788095086602421278899721... = prod(k>=1, 1-1/2^k) (cf. A048651). - Benoit Cloitre, Apr 11 2003
a(n) = (6*a(n-1)^2*a(n-3) - 8*a(n-1)*a(n-2)^2) / (a(n-2)*a(n-3)). [From Putman Exam]. - Max Alekseyev, May 18 2007
a(n) = 2*A203305(n), n > 0. - Clark Kimberling, Jan 01 2012
From Max Alekseyev, Jun 09 2015: (Start)
a(n) = 2^A000217(n) * A005329(n).
a(n) = 2^n * A002884(n).
a(n) = 2^n * n! * A053601(n). (End)
From G. C. Greubel, Aug 31 2023: (Start)
a(n) = Product_{j=0..n-1} (2^(n+1) - 2^(j+1)).
a(n) = (-1)^n * 2^binomial(n+1,2) * QPochhammer(2,2,n). (End)

A203479 a(n) = Product_{1 <= i < j <= n} (2^i + 2^j - 2).

Original entry on oeis.org

1, 4, 320, 2027520, 3855986196480, 8359491805553413324800, 79457890145647634305213865656320000, 12897878211365028383150895090566532213003150950400000, 140613650417826346093374124598539442743630963394643403845144815232614400000
Offset: 1

Author

Clark Kimberling, Jan 02 2012

Keywords

Comments

Each term divides its successor, as in A203480.

Crossrefs

Programs

  • Magma
    [(&*[(&*[2^j+2^k-2: k in [1..j]])/(2^(j+1)-2): j in [1..n]]): n in [1..15]]; // G. C. Greubel, Aug 28 2023
    
  • Maple
    a:= n-> mul(mul(2^i+2^j-2, i=1..j-1), j=2..n):
    seq(a(n), n=1..12);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    (* First program *)
    f[j_]:= 2^j -1; z = 15;
    v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
    Table[v[n], {n,z}]               (* A203479 *)
    Table[v[n+1]/v[n], {n,z-1}]      (* A203480 *)
    Table[v[n+1]/(4*v[n]), {n,z-1}]  (* A203481 *)
    (* Second program *)
    Table[Product[2^j +2^k -2, {j,n}, {k,j-1}], {n,15}] (* G. C. Greubel, Aug 28 2023 *)
  • SageMath
    [product(product(2^j+2^k-2 for k in range(1,j)) for j in range(1,n+1)) for n in range(1,16)] # G. C. Greubel, Aug 28 2023

Formula

a(n) ~ c * 2^((n-1)*n*(n+1)/3) / QPochhammer(1/2, 1/4)^(n-1), where c = 0.0732262905669624786298393270254722268761908164083517721484477901776137... - Vaclav Kotesovec, Aug 09 2025

Extensions

Name edited by Alois P. Heinz, Jul 23 2017

A203477 a(n) = Product_{0 <= i < j <= n-1} (2^i + 2^j).

Original entry on oeis.org

1, 3, 90, 97200, 14276736000, 1107198567383040000, 178601637561927097909248000000, 237856509917156074017606774172522905600000000, 10420480393274493153643458442091600404477248333907230720000000000
Offset: 1

Author

Clark Kimberling, Jan 02 2012

Keywords

Comments

Each term divides its successor, as in A203478.

Crossrefs

Programs

  • Magma
    [(&*[(&*[2^j + 2^k: k in [0..j]])/2^(j+1): j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 28 2023
    
  • Maple
    a:= n-> mul(mul(2^i+2^j, i=0..j-1), j=1..n-1):
    seq(a(n), n=1..10);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    (* First program *)
    f[j_]:= 2^(j-1); z = 13;
    v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
    Table[v[n], {n,z}]                       (* A203477 *)
    Table[v[n+1]/v[n], {n,z-1}]              (* A203478 *)
    Table[v[n]*v[n+2]/(2*v[n+1]^2), {n,22}]  (* A164051 *)
    (* Second program *)
    Table[Product[(2^j^2)*QPochhammer[-1/2^j,2,j], {j,0,n-1}], {n,20}] (* G. C. Greubel, Aug 28 2023 *)
  • PARI
    a(n)=prod(i=0,n-2,prod(j=i+1,n-1,2^i+2^j)) \\ Charles R Greathouse IV, Feb 16 2021
    
  • SageMath
    [product(product(2^j + 2^k for k in range(j)) for j in range(n)) for n in range(1,21)] # G. C. Greubel, Aug 28 2023

Extensions

Name edited by Alois P. Heinz, Jul 23 2017

A335011 Decimal expansion of Product_{k>=1} (1 - 1/2^k)^k.

Original entry on oeis.org

0, 9, 9, 6, 7, 9, 7, 3, 1, 2, 6, 2, 8, 7, 9, 9, 8, 5, 4, 6, 4, 6, 6, 5, 3, 5, 6, 0, 4, 6, 8, 4, 7, 3, 0, 4, 9, 6, 3, 4, 4, 4, 6, 1, 5, 0, 9, 7, 3, 1, 7, 5, 3, 0, 1, 2, 6, 4, 0, 9, 1, 8, 5, 5, 5, 4, 5, 6, 0, 6, 3, 0, 5, 0, 0, 9, 8, 0, 8, 2, 4, 2, 5, 3, 8, 6, 5, 2, 4, 0, 7, 2, 7, 6, 9, 2, 2, 4, 7, 3, 3, 5, 4, 3, 9, 4
Offset: 0

Author

Vaclav Kotesovec, May 19 2020

Keywords

Examples

			0.0996797312628799854646653560468473049634446150973175301264091855545606305...
		

Crossrefs

Programs

  • Maple
    evalf(exp(-Sum(2^j / (j * (2^j - 1)^2), j=1..infinity)), 120);
  • PARI
    prodinf(k=1, (1 - 1/2^k)^k)

Formula

Equals exp(-Sum_{j>=1} 2^j / (j * (2^j - 1)^2)).
Showing 1-7 of 7 results.