cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A258745 Order of general affine group AGL(n,2) (=A028365(n)) divided by (n+1).

Original entry on oeis.org

1, 1, 8, 336, 64512, 53329920, 184308203520, 2621599886868480, 152122702768688332800, 35820150273699719298416640, 34112245508649716682268134604800, 131089993748184007771243790830298726400, 2029650642403883210241235064170615545004032000
Offset: 0

Views

Author

Max Alekseyev, Jun 08 2015

Keywords

Formula

a(n) = A028365(n) / (n+1) = 2^n * A002884(n) / (n+1) = 2^n * n! * A053601(n) / (n+1).

A002884 Number of nonsingular n X n matrices over GF(2) (order of the group GL(n,2)); order of Chevalley group A_n (2); order of projective special linear group PSL_n(2).

Original entry on oeis.org

1, 1, 6, 168, 20160, 9999360, 20158709760, 163849992929280, 5348063769211699200, 699612310033197642547200, 366440137299948128422802227200, 768105432118265670534631586896281600, 6441762292785762141878919881400879415296000, 216123289355092695876117433338079655078664339456000
Offset: 0

Views

Author

Keywords

Comments

Also number of bases for GF(2^n) over GF(2).
Also (apparently) number of n X n matrices over GF(2) having permanent = 1. - Hugo Pfoertner, Nov 14 2003
The previous comment is true because over GF(2) permanents and determinants are the same. - Joerg Arndt, Mar 07 2008
The number of automorphisms of (Z_2)^n (the direct product of n copies of Z_2). - Peter Eastwood, Apr 06 2015
Note that n! divides a(n) since the subgroup of GL(n,2) consisting of all permutation matrices is isomorphic to S_n (the n-th symmetric group). - Jianing Song, Oct 29 2022
The number of boolean operations on n bits, or quantum operations on n qubits, that can be constructed using only CNOT (controlled NOT) gates. - David Radcliffe, Jul 06 2025

Examples

			PSL_2(2) is isomorphic to the symmetric group S_3 of order 6.
		

References

  • Roger W. Carter, Simple groups of Lie type. Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. viii+331pp. MR0407163 (53 #10946). See page 2.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
  • K. J. Horadam, Hadamard matrices and their applications. Princeton University Press, Princeton, NJ, 2007. xiv+263 pp. See p. 132.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A316622 and A316623.
Cf. A006516, A048651, A203303. Row sums of A381854.

Programs

  • Magma
    [1] cat [(&*[2^n -2^k: k in [0..n-1]]): n in [1..15]]; // G. C. Greubel, Aug 31 2023
    
  • Maple
    # First program
    A002884:= n-> mul(2^n - 2^i, i=0..n-1);
    seq(A002884(n), n = 0..12);
    # Second program
    A002884:= n-> 2^(n*(n-1)/2) * mul( 2^i - 1, i=1..n);
    seq(A002884(n), n=0..12);
  • Mathematica
    Table[Product[2^n-2^i,{i,0,n-1}],{n,0,13}] (* Harvey P. Dale, Aug 07 2011 *)
    Table[2^(n*(n-1)/2) QPochhammer[2, 2, n] // Abs, {n, 0, 11}] (* Jean-François Alcover, Jul 15 2017 *)
  • PARI
    a(n)=prod(i=2,n,2^i-1)<Charles R Greathouse IV, Jan 13 2012
    
  • SageMath
    [product(2^n -2^j for j in range(n)) for n in range(16)] # G. C. Greubel, Aug 31 2023

Formula

a(n) = Product_{i=0..n-1} (2^n-2^i).
a(n) = 2^(n*(n-1)/2) * Product_{i=1..n} (2^i - 1).
a(n) = A203303(n+1)/A203303(n). - R. J. Mathar, Jan 06 2012
a(n) = (6*a(n-1)^2*a(n-3) - 8*a(n-1)*a(n-2)^2) / (a(n-2)*a(n-3)) for n > 2. - Seiichi Manyama, Oct 20 2016
a(n) ~ A048651 * 2^(n^2). - Vaclav Kotesovec, May 19 2020
a(n) = A006125(n) * A005329(n). - John Keith, Jun 30 2021
a(n) = Product_{k=1..n} A006516(k). - Amiram Eldar, Jul 06 2025

A020522 a(n) = 4^n - 2^n.

Original entry on oeis.org

0, 2, 12, 56, 240, 992, 4032, 16256, 65280, 261632, 1047552, 4192256, 16773120, 67100672, 268419072, 1073709056, 4294901760, 17179738112, 68719214592, 274877382656, 1099510579200, 4398044413952, 17592181850112, 70368735789056, 281474959933440
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length 2*n+2 between any two diametrically opposite vertices of the cycle graph C_8. - Herbert Kociemba, Jul 02 2004
If we consider a(4*k+2), then 2^4 == 3^4 == 3 (mod 13); 2^(4*k+2) + 3^(4*k+2) == 3^k*(4+9) == 3*0 == 0 (mod 13). So a(4*k+2) can never be prime. - Jose Brox, Dec 27 2005
If k is odd, then a(n*k) is divisible by a(n), since: a(n*k) = (2^n)^k + (3^n)^k = (2^n + 3^n)*((2^n)^(k-1) - (2^n)^(k-2) (3^n) + - ... + (3^n)^(k-1)). So the only possible primes in the sequence are a(0) and a(2^n) for n>=1. I've checked that a(2^n) is composite for 3 <= n <= 15. As with Fermat primes, a probabilistic argument suggests that there are only finitely many primes in the sequence. - Dean Hickerson, Dec 27 2005
Let x,y,z be elements from some power set P(n), i.e., the power set of a set of n elements. Define a function f(x,y,z) in the following manner: f(x,y,z) = 1 if x is a subset of y and y is a subset of z and x does not equal z; f(x,y,z) = 0 if x is not a subset of y or y is not a subset of z or x equals z. Now sum f(x,y,z) for all x,y,z of P(n). This gives a(n). - Ross La Haye, Dec 26 2005
Number of monic (irreducible) polynomials of degree 1 over GF(2^n). - Max Alekseyev, Jan 13 2006
Let P(A) be the power set of an n-element set A and B be the Cartesian product of P(A) with itself. Then a(n) = the number of (x,y) of B for which x does not equal y. - Ross La Haye, Jan 02 2008
For n>1: central terms of the triangle in A173787. - Reinhard Zumkeller, Feb 28 2010
Pronic numbers of the form: (2^n - 1)*2^n, which is the n-th Mersenne number times 2^n, see A000225 and A002378. - Fred Daniel Kline, Nov 30 2013
Indices where records of A037870 occur. - Philippe Beaudoin, Sep 03 2014
Half the total edge length for a minimum linear arrangement of a hypercube of dimension n. (See Harper's paper below for proof). - Eitan Frachtenberg, Apr 07 2017
Number of pairs in GF(2)^{n+1} whose dot product is 1. - Christopher Purcell, Dec 11 2021

Examples

			n=5: a(5) = 4^5 - 2^5 = 1024 - 32 = 992 -> '1111100000'.
		

Crossrefs

Ratio of successive terms of A028365.

Programs

Formula

From Herbert Kociemba, Jul 02 2004: (Start)
G.f.: 2*x/((-1 + 2*x)*(-1 + 4*x)).
a(n) = 6*a(n-1) - 8*a(n-2). (End)
E.g.f.: exp(4*x) - exp(2*x). - Mohammad K. Azarian, Jan 14 2009
From Reinhard Zumkeller, Feb 07 2006, Jaroslav Krizek, Aug 02 2009: (Start)
a(n) = A099393(n)-A000225(n+1) = A083420(n)-A099393(n).
In binary representation, n>0: n 1's followed by n 0's (A138147(n)).
A000120(a(n)) = n.
A023416(a(n)) = n.
A070939(a(n)) = 2*n.
2*a(n)+1 = A030101(A099393(n)). (End)
a(n) = A085812(n) - A001700(n). - John Molokach, Sep 28 2013
a(n) = 2*A006516(n) = A000079(n)*A000225(n) = A265736(A000225(n)). - Reinhard Zumkeller, Dec 15 2015
a(n) = (4^(n/2) - 4^(n/4))*(4^(n/2) + 4^(n/4)). - Bruno Berselli, Apr 09 2018
Sum_{n>0} 1/a(n) = E - 1, where E is the Erdős-Borwein constant (A065442). - Peter McNair, Dec 19 2022
a(n) = A000302(n) - A000079(n). - John Reimer Morales, Aug 04 2025

A028665 Galois numbers for p=3; order of group AGL(n,3).

Original entry on oeis.org

1, 6, 432, 303264, 1965150720, 115562653240320, 61330486826476707840, 293207687471256968260730880, 12619705781992895315056778792140800, 4888884191426907931326620039839052385484800, 17046196453240220939126401085378073952125928970649600
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*3^#2 (3^#2-1)&, 1, Range[ 20 ]]
    a[n_] := 3^n * Product[3^n - 3^k, {k, 0, n-1}]; Array[a, 11, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 3^n * prod(k = 0, n-1, 3^n - 3^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 3^n * Product_{k=0..n-1} (3^n - 3^k).
a(n) ~ c * 3^(n^2+n), where c = A100220. - Amiram Eldar, Jul 12 2025

A028667 Galois numbers for p=5; order of group AGL(n,5).

Original entry on oeis.org

1, 20, 12000, 186000000, 72540000000000, 708171750000000000000, 172882428468750000000000000000, 1055177097007236328125000000000000000000, 161006835289591673217773437500000000000000000000000, 614192019859664935862872123718261718750000000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*5^#2 (5^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 5^n * Product[5^n - 5^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 5^n * prod(k = 0, n-1, 5^n - 5^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 5^n * Product_{k=0..n-1} (5^n - 5^k).
a(n) ~ c * 5^(n^2+n), where c = A100222. - Amiram Eldar, Jul 12 2025

A028669 Galois numbers for p=7; order of group AGL(n,7).

Original entry on oeis.org

1, 42, 98784, 11587955904, 66774437101209600, 18861003469034659931443200, 261058346935768909875766027257446400, 177055579258883302762565632026325003745732198400, 5884074751780775313126615757455645503567996488345394872320000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*7^#2 (7^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 7^n * Product[7^n - 7^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 7^n * prod(k = 0, n-1, 7^n - 7^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 7^n * Product_{k=0..n-1} (7^n - 7^k).
a(n) ~ c * 7^(n^2+n), where c = A132035. - Amiram Eldar, Jul 12 2025

A028673 Galois numbers for p=11; order of group AGL(n,11).

Original entry on oeis.org

1, 110, 1597200, 2827411356000, 606039338269189440000, 15719002038355567350156912000000, 49332934203739383347738694321468865920000000, 18734172592683683919731709047397914403374452828934400000000, 860830165835516295815608223447061872667128267986790628055380728832000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*11^#2 (11^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 11^n * Product[11^n - 11^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 11^n * prod(k = 0, n-1, 11^n - 11^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 11^n * Product_{k=0..n-1} (11^n - 11^k).
a(n) ~ c * 11^(n^2+n), where c = A132267. - Amiram Eldar, Jul 12 2025

A028675 Galois numbers for p=13; order of group AGL(n,13).

Original entry on oeis.org

1, 156, 4429152, 21368939889024, 17430690424387037091840, 2402962221899462961810522363863040, 55984406793280086114756507719510983331312762880, 220431677762305366198023742325712037545142450383991425548943360
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*13^#2 (13^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 13^n * Product[13^n - 13^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 13^n * prod(k = 0, n-1, 13^n - 13^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 13^n * Product_{k=0..n-1} (13^n - 13^k).
a(n) ~ c * 13^(n^2+n), where c = Product_{k>=1} (1 - 1/13^k) = 0.9171624725409... . - Amiram Eldar, Jul 12 2025

A028679 Galois numbers for p=17; order of group AGL(n,17).

Original entry on oeis.org

1, 272, 22639104, 546341708980224, 3811101610741578352558080, 7683152190027081335646892427952783360, 4476375132477699824408564935442752007430598683525120, 753722313834315665863920705126825485467891025286555525186004419870720
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*17^#2 (17^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 17^n * Product[17^n - 17^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 17^n * prod(k = 0, n-1, 17^n - 17^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 17^n * Product_{k=0..n-1} (17^n - 17^k).
a(n) ~ c * 17^(n^2+n), where c = Product_{k>=1} (1 - 1/17^k) = 0.937716969709... . - Amiram Eldar, Jul 12 2025

A028681 Galois numbers for p=19; order of group AGL(n,19).

Original entry on oeis.org

1, 342, 44446320, 2090711424299040, 35507456811518119000588800, 217698482437446717711443628892666137600, 481835288795046555242155407852974930874821656470528000, 384989616762670041552999657317996225002975219911214265653201810077696000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*19^#2 (19^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 19^n * Product[19^n - 19^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 19^n * prod(k = 0, n-1, 19^n - 19^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 19^n * Product_{k=0..n-1} (19^n - 19^k).
a(n) ~ c * 19^(n^2+n), where c = Product_{k>=1} (1 - 1/19^k) = 0.944598742929... . - Amiram Eldar, Jul 12 2025
Showing 1-10 of 16 results. Next