cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203310 a(n) = A203309(n+1)/A203309(n).

Original entry on oeis.org

1, 2, 15, 252, 7560, 356400, 24324300, 2270268000, 277880803200, 43197833952000, 8315583035760000, 1942008468966720000, 540988073497872000000, 177227692877902867200000, 67457290601651778828000000, 29522484828017013792960000000, 14721879100904484211422720000000
Offset: 0

Views

Author

Clark Kimberling, Jan 01 2012

Keywords

Crossrefs

Programs

  • Magma
    F:= Factorial; [(F(n)*F(2*n+2))/(2^n*F(n+2)): n in [0..20]]; // G. C. Greubel, Aug 29 2023
    
  • Maple
    b:= proc(n) option remember; uses LinearAlgebra;
          Determinant(VandermondeMatrix([i*(i+1)/2$i=1..n]))
        end:
    a:= n-> b(n+1)/b(n):
    seq(a(n), n=0..16);  # Alois P. Heinz, Aug 29 2023
  • Mathematica
    (* First program *)
    f[j_]:= j*(j+1)/2; z = 15;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    Table[v[n], {n,z}]             (* A203309 *)
    Table[v[n+1]/v[n], {n,0,z-1}]  (* A203310 *)
    (* Second program *)
    Table[(n!*(2*n+2)!)/(2^n*(n+2)!), {n,0,20}] (* G. C. Greubel, Aug 29 2023 *)
  • Python
    from operator import mul
    from functools import reduce
    def f(n): return n*(n + 1)//2
    def v(n): return 1 if n==1 else reduce(mul, (f(k) - f(j) for k in range(2, n + 1) for j in range(1, k)))
    print([v(n + 1)//v(n) for n in range(1, 15)]) # Indranil Ghosh, Jul 24 2017
    
  • SageMath
    f=factorial; [(f(n)*f(2*n+2))/(2^n*f(n+2)) for n in range(21)] # G. C. Greubel, Aug 29 2023

Formula

a(n) ~ sqrt(Pi) * 2^(n+3) * n^(2*n + 1/2) / exp(2*n). - Vaclav Kotesovec, Jan 25 2019
a(n) = (n!*(2*n+2)!)/(2^n*(n+2)!). - G. C. Greubel, Aug 29 2023

Extensions

Name corrected by Vaclav Kotesovec, Jan 25 2019
a(0)=1 prepended by Alois P. Heinz, Aug 29 2023