cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203318 G.f.: exp( Sum_{n>=1} x^n/n * exp( Sum_{k>=1} Lucas(n*k)*x^(n*k)/k ) ) where Lucas(n) = A000032(n).

Original entry on oeis.org

1, 1, 2, 4, 9, 16, 36, 64, 135, 250, 504, 917, 1864, 3372, 6593, 12176, 23473, 42732, 82142, 149282, 283104, 516780, 967894, 1757865, 3291964, 5959633, 11039163, 20022457, 36908442, 66637739, 122512809, 220717328, 403499293, 726866565, 1322670966, 2376541137
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2011

Keywords

Comments

Note: 1/(1-x-x^2) = exp(Sum_{n>=1} Lucas(n)*x^n/n) is the g.f. of the Fibonacci numbers.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 16*x^5 + 36*x^6 + 64*x^7 +...
G.f.: A(x) = exp( Sum_{n>=1} F_n(x^n) * x^n/n )
where F_n(x) = exp( Sum_{k>=1} Lucas(n*k)*x^k/k ), which begin:
F_1(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 13*x^6 + 21*x^7 +...;
F_2(x) = 1 + 3*x + 8*x^2 + 21*x^3 + 55*x^4 + 144*x^5 + 377*x^6 +...;
F_3(x) = 1 + 4*x + 17*x^2 + 72*x^3 + 305*x^4 + 1292*x^5 + 5473*x^6 +...;
F_4(x) = 1 + 7*x + 48*x^2 + 329*x^3 + 2255*x^4 + 15456*x^5 +...;
F_5(x) = 1 + 11*x + 122*x^2 + 1353*x^3 + 15005*x^4 + 166408*x^5 +...;
F_6(x) = 1 + 18*x + 323*x^2 + 5796*x^3 + 104005*x^4 + 1866294*x^5 +...;
...
Also, F_n(x^n) = Product_{k=0..n-1} F(u^k*x) where u = n-th root of unity:
F_1(x) = F(x) = 1/(1-x-x^2) = g.f. of the Fibonacci numbers;
F_2(x^2) = F(x)*F(-x) = 1/(1-3*x^2+x^4);
F_3(x^3) = F(x)*F(w*x)*F(w^2*x) = 1/(1-4*x^3-x^6) where w = exp(2*Pi*I/3);
F_4(x^4) = F(x)*F(I*x)*F(-x)*F(-I*x) = 1/(1-7*x^4+x^8);
F_5(x^5) = 1/(1-11*x^5-x^10);
In general,
F_n(x^n) = 1/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)).
...
The logarithmic derivative of this sequence begins:
A203319 = [1,3,7,19,26,81,92,267,358,848,980,3061,3030,7976,...].
		

Crossrefs

Cf. A203319, A203320, A000032 (Lucas); A203413 (Pell variant).

Programs

  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(exp(sum(m=1,n+1,(x^m/m)/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n)))),n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=local(L=vector(n+1, i, 1)); L=Vec(deriv(sum(m=1, n, x^m/m*exp(sum(k=1, floor((n+1)/m), Lucas(m*k)*x^(m*k)/k)+x*O(x^n))))); polcoeff(exp(x*Ser(vector(n+1, m, L[m]/m))), n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n),F=1/(1-x-x^2+x*O(x^n))); A=exp(sum(m=1, n+1, x^m/m*round(prod(k=0, m-1, subst(F, x, exp(2*Pi*I*k/m)*x+x*O(x^n)))))); polcoeff(A, n)}

Formula

G.f.: exp( Sum_{n>=1} A203319(n)*x^n/n ) where A203319(n) = n*fibonacci(n)*Sum_{d|n} 1/(d*fibonacci(d)).
G.f.: exp( Sum_{n>=1} (x^n/n) / (1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) ) where Lucas(n) = A000032(n).
G.f.: exp( Sum_{n>=1} F_n(x^n) * x^n/n ) such that F_n(x^n) = Product_{k=0..n-1} F(u^k*x) where F(x) = 1/(1-x-x^2) and u is an n-th root of unity.