cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203320 G.f.: exp( Sum_{n>=1} x^n/n * exp( Sum_{k>=1} sigma(n*k) * x^(n*k)/k ) ).

Original entry on oeis.org

1, 1, 2, 4, 9, 16, 35, 61, 124, 222, 427, 749, 1434, 2493, 4585, 8032, 14511, 25096, 44791, 77019, 135435, 232002, 402957, 685582, 1181399, 1998168, 3410288, 5741978, 9726821, 16286497, 27409625, 45672026, 76378731, 126706567, 210690588, 347954716, 575685559, 946756712
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 16*x^5 + 35*x^6 + 61*x^7 +...
G.f.: A(x) = exp( Sum_{n>=1} P_n(x^n) * x^n/n )
where P_n(x) = exp( Sum_{k>=1} sigma(n*k)*x^k/k ), which begin:
P_1(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 +...;
P_2(x) = 1 + 3*x + 8*x^2 + 19*x^3 + 41*x^4 + 83*x^5 + 161*x^6 +...;
P_3(x) = 1 + 4*x + 14*x^2 + 39*x^3 + 101*x^4 + 238*x^5 + 533*x^6 +...;
P_4(x) = 1 + 7*x + 32*x^2 + 119*x^3 + 385*x^4 + 1127*x^5 + 3057*x^6 +...;
P_5(x) = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 917*x^5 + 2486*x^6 +...;
P_6(x) = 1 + 12*x + 86*x^2 + 469*x^3 + 2141*x^4 + 8594*x^5 +...;
P_7(x) = 1 + 8*x + 44*x^2 + 192*x^3 + 726*x^4 + 2464*x^5 +...;
P_8(x) = 1 + 15*x + 128*x^2 + 815*x^3 + 4289*x^4 + 19663*x^5 +...;
...
Also, P_n(x^n) = Product_{k=0..n-1} P(u^k*x) where u = n-th root of unity:
P_1(x) = P(x), the partition function;
P_2(x^2) = P(x)*P(-x);
P_3(x^3) = P(x)*P(u*x)*P(u^2*x) where u = exp(2*Pi*I/3);
P_4(x^4) = P(x)*P(I*x)*P(I^2*x)*P(I^3*x) where I^2 = -1;
...
The logarithmic derivative of this sequence begins:
A203321 = [1,3,7,19,26,75,78,211,241,518,463,1447,1002,2558,...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(L=vector(n+1, i, 1)); L=Vec(deriv(sum(m=1, n, x^m/m*exp(sum(k=1, floor(n/m), sigma(m*k)*x^(m*k)/k)+x*O(x^n))))); polcoeff(exp(x*Ser(vector(n+1, m, L[m]/m))), n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n),P=exp(sum(k=1,n,sigma(k)*x^k/k)+x*O(x^n))); A=exp(sum(m=1, n+1, x^m/m*round(prod(k=0, m-1, subst(P, x, exp(2*Pi*I*k/m)*x+x*O(x^n)))))); polcoeff(A, n)}

Formula

G.f.: exp( Sum_{n>=1} P_n(x^n) * x^n/n ) where P_n(x^n) = Product_{k=0..n-1} P(u^k*x), u is an n-th root of unity, and P(x) is the partition function (A000041); P(x) = exp(Sum_{n>=1} sigma(n)*x^n/n) where sigma(n) is the sum of divisors of n (A000203).
The logarithmic derivative yields A203321.