cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A198296 G.f.: exp( Sum_{n>=1} (x^n/n) / Product_{d|n} (1 - d*x^n) ).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 17, 22, 44, 62, 115, 154, 311, 409, 754, 1070, 1949, 2639, 4917, 6645, 12055, 16916, 29594, 40719, 73907, 100959, 176010, 248207, 429626, 594220, 1040624, 1436936, 2473555, 3486360, 5901887, 8233872, 14174779, 19689223, 33203829, 46967767
Offset: 0

Views

Author

Paul D. Hanna, Jan 26 2012

Keywords

Comments

Logarithmic derivative yields A198299.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 17*x^6 + 22*x^7 +...
such that, by definition:
log(A(x)) = x/(1-x) + (x^2/2)/((1-x^2)*(1-2*x^2)) + (x^3/3)/((1-x^3)*(1-3*x^3)) + (x^4/4)/((1-x^4)*(1-2*x^4)*(1-4*x^4)) + (x^5/5)/((1-x^5)*(1-5*x^5)) + (x^6/6)/((1-x^6)*(1-2*x^6)*(1-3*x^6)*(1-6*x^6)) +...+ (x^n/n)/Product_{d|n} (1-d*x^n) +...
Also, we have the identity:
log(A(x)) = (1 + x + x^2 + x^3 + x^4 + x^5 +...)*x
+ (1 + 3*x^2 + 7*x^4 + 15*x^6 + 31*x^8 +...)*x^2/2
+ (1 + 4*x^3 + 13*x^6 + 40*x^9 + 121*x^12 +...)*x^3/3
+ (1 + 7*x^4 + 35*x^8 + 155*x^12 + 651*x^16 +...)*x^4/4
+ (1 + 6*x^5 + 31*x^10 + 156*x^15 + 781*x^20 +...)*x^5/5
+ (1 + 12*x^6 + 97*x^12 + 672*x^18 + 4333*x^24 +...)*x^6/6 +...
+ exp( Sum_{k>=1} sigma(n,k)*x^(n*k)/k )*x^n/n +...
Explicitly, the logarithm begins:
log(A(x)) = x + 3*x^2/2 + 4*x^3/3 + 11*x^4/4 + 6*x^5/5 + 36*x^6/6 + 8*x^7/7 + 83*x^8/8 + 49*x^9/9 + 178*x^10/10 +...+ A198299(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*exp(sum(k=1,n\m,sigma(m,k)*x^(m*k)/k)+x*O(x^n)))),n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*exp(sumdiv(m,d,-log(1-d*x^m+x*O(x^n)))))),n)}

Formula

G.f.: exp( Sum_{n>=1} x^n/n * exp( Sum_{k>=1} sigma(n,k)*x^(n*k)/k ) ), where sigma(n,k) is the sum of the k-th powers of the divisors of n.

A203318 G.f.: exp( Sum_{n>=1} x^n/n * exp( Sum_{k>=1} Lucas(n*k)*x^(n*k)/k ) ) where Lucas(n) = A000032(n).

Original entry on oeis.org

1, 1, 2, 4, 9, 16, 36, 64, 135, 250, 504, 917, 1864, 3372, 6593, 12176, 23473, 42732, 82142, 149282, 283104, 516780, 967894, 1757865, 3291964, 5959633, 11039163, 20022457, 36908442, 66637739, 122512809, 220717328, 403499293, 726866565, 1322670966, 2376541137
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2011

Keywords

Comments

Note: 1/(1-x-x^2) = exp(Sum_{n>=1} Lucas(n)*x^n/n) is the g.f. of the Fibonacci numbers.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 16*x^5 + 36*x^6 + 64*x^7 +...
G.f.: A(x) = exp( Sum_{n>=1} F_n(x^n) * x^n/n )
where F_n(x) = exp( Sum_{k>=1} Lucas(n*k)*x^k/k ), which begin:
F_1(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 13*x^6 + 21*x^7 +...;
F_2(x) = 1 + 3*x + 8*x^2 + 21*x^3 + 55*x^4 + 144*x^5 + 377*x^6 +...;
F_3(x) = 1 + 4*x + 17*x^2 + 72*x^3 + 305*x^4 + 1292*x^5 + 5473*x^6 +...;
F_4(x) = 1 + 7*x + 48*x^2 + 329*x^3 + 2255*x^4 + 15456*x^5 +...;
F_5(x) = 1 + 11*x + 122*x^2 + 1353*x^3 + 15005*x^4 + 166408*x^5 +...;
F_6(x) = 1 + 18*x + 323*x^2 + 5796*x^3 + 104005*x^4 + 1866294*x^5 +...;
...
Also, F_n(x^n) = Product_{k=0..n-1} F(u^k*x) where u = n-th root of unity:
F_1(x) = F(x) = 1/(1-x-x^2) = g.f. of the Fibonacci numbers;
F_2(x^2) = F(x)*F(-x) = 1/(1-3*x^2+x^4);
F_3(x^3) = F(x)*F(w*x)*F(w^2*x) = 1/(1-4*x^3-x^6) where w = exp(2*Pi*I/3);
F_4(x^4) = F(x)*F(I*x)*F(-x)*F(-I*x) = 1/(1-7*x^4+x^8);
F_5(x^5) = 1/(1-11*x^5-x^10);
In general,
F_n(x^n) = 1/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)).
...
The logarithmic derivative of this sequence begins:
A203319 = [1,3,7,19,26,81,92,267,358,848,980,3061,3030,7976,...].
		

Crossrefs

Cf. A203319, A203320, A000032 (Lucas); A203413 (Pell variant).

Programs

  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(exp(sum(m=1,n+1,(x^m/m)/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n)))),n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=local(L=vector(n+1, i, 1)); L=Vec(deriv(sum(m=1, n, x^m/m*exp(sum(k=1, floor((n+1)/m), Lucas(m*k)*x^(m*k)/k)+x*O(x^n))))); polcoeff(exp(x*Ser(vector(n+1, m, L[m]/m))), n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n),F=1/(1-x-x^2+x*O(x^n))); A=exp(sum(m=1, n+1, x^m/m*round(prod(k=0, m-1, subst(F, x, exp(2*Pi*I*k/m)*x+x*O(x^n)))))); polcoeff(A, n)}

Formula

G.f.: exp( Sum_{n>=1} A203319(n)*x^n/n ) where A203319(n) = n*fibonacci(n)*Sum_{d|n} 1/(d*fibonacci(d)).
G.f.: exp( Sum_{n>=1} (x^n/n) / (1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) ) where Lucas(n) = A000032(n).
G.f.: exp( Sum_{n>=1} F_n(x^n) * x^n/n ) such that F_n(x^n) = Product_{k=0..n-1} F(u^k*x) where F(x) = 1/(1-x-x^2) and u is an n-th root of unity.

A203321 L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} x^n/n * exp( Sum_{k>=1} sigma(n*k)*x^(n*k)/k ).

Original entry on oeis.org

1, 3, 7, 19, 26, 75, 78, 211, 241, 518, 463, 1447, 1002, 2558, 2612, 5715, 3928, 11901, 7316, 21574, 17031, 35159, 23047, 80575, 40951, 108488, 86911, 206638, 107823, 370220, 173725, 570803, 372181, 816496, 451883, 1723741, 665150, 2048982, 1404150, 3705366, 1530859, 5892479
Offset: 1

Views

Author

Paul D. Hanna, Dec 31 2011

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 19*x^4/4 + 26*x^5/5 + 75*x^6/6 +...
where
L(x) = x*exp(1*x + 3*x^2/2 + 4*x^3/3 + 7*x^4/4 + 6*x^5/5 +...) +
x^2/2*exp(3*x^2 + 7*x^4/2 + 12*x^6/3 + 15*x^8/4 + 18*x^10/5 +...) +
x^3/3*exp(4*x^3 + 12*x^6/2 + 13*x^9/3 + 28*x^12/4 + 24*x^15/5 +...) +
x^4/4*exp(7*x^4 + 15*x^8/2 + 28*x^12/3 + 31*x^16/4 + 42*x^20/5 +...) +
x^5/5*exp(6*x^5 + 18*x^10/2 + 24*x^15/3 + 42*x^20/4 + 31*x^25/5 +...) +
x^6/6*exp(12*x^6 + 28*x^12/2 + 39*x^18/3 + 60*x^24/4 + 72*x^30/5 +...) +
x^7/7*exp(8*x^7 + 24*x^14/2 + 32*x^21/3 + 56*x^28/4 + 48*x^35/5 +...) +
x^8/8*exp(15*x^8 + 31*x^16/2 + 60*x^24/3 + 63*x^32/4 + 90*x^40/5 +...) +...
...
Equivalently, L(x) = Sum_{n>=1} P_n(x^n) * x^n/n where
P_n(x) = exp( Sum_{k>=1} sigma(n*k)*x^k/k ), which begin:
P_1(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 +...;
P_2(x) = 1 + 3*x + 8*x^2 + 19*x^3 + 41*x^4 + 83*x^5 + 161*x^6 +...;
P_3(x) = 1 + 4*x + 14*x^2 + 39*x^3 + 101*x^4 + 238*x^5 + 533*x^6 +...;
P_4(x) = 1 + 7*x + 32*x^2 + 119*x^3 + 385*x^4 + 1127*x^5 + 3057*x^6 +...;
P_5(x) = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 917*x^5 + 2486*x^6 +...;
P_6(x) = 1 + 12*x + 86*x^2 + 469*x^3 + 2141*x^4 + 8594*x^5 +...;
P_7(x) = 1 + 8*x + 44*x^2 + 192*x^3 + 726*x^4 + 2464*x^5 +...;
P_8(x) = 1 + 15*x + 128*x^2 + 815*x^3 + 4289*x^4 + 19663*x^5 +...;
...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(L=vector(max(n,1), i, 1)); L=Vec(deriv(sum(m=1, n, x^m/m*exp(sum(k=1, floor(n/m), sigma(m*k)*x^(m*k)/k)+x*O(x^n))))); if(n<1,0,L[n])}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n),P=exp(sum(k=1,n,sigma(k)*x^k/k)+x*O(x^n))); A=exp(sum(m=1, n+1, x^m/m*round(prod(k=0, m-1, subst(P, x, exp(2*Pi*I*k/m)*x+x*O(x^n)))))); n*polcoeff(log(A), n)}

Formula

L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} x^n/n * P_n(x^n) where P_n(x^n) = Product_{k=0..n-1} P(u^k*x) where u is an n-th root of unity, and P(x) is the partition function (A000041); P(x) = exp(Sum_{n>=1} sigma(n)*x^n/n) where sigma(n) is the sum of divisors of n (A000203).
Showing 1-3 of 3 results.