A203398 T(n,k), a triangular array read by rows, is the number of classes of equivalent 2-color n-bead necklaces (turning over is not allowed) that have k necklaces.
2, 2, 1, 2, 0, 2, 2, 1, 0, 3, 2, 0, 0, 0, 6, 2, 1, 2, 0, 0, 9, 2, 0, 0, 0, 0, 0, 18, 2, 1, 0, 3, 0, 0, 0, 30, 2, 0, 2, 0, 0, 0, 0, 0, 56, 2, 1, 0, 0, 6, 0, 0, 0, 0, 99, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 186, 2, 1, 2, 3, 0, 9, 0, 0, 0, 0, 0, 335
Offset: 1
Examples
2 2 1 2 0 2 2 1 0 3 2 0 0 0 6 2 1 2 0 0 9 2 0 0 0 0 0 18 2 1 0 3 0 0 0 30 2 0 2 0 0 0 0 0 56 2 1 0 0 6 0 0 0 0 99 2 0 0 0 0 0 0 0 0 0 186 2 1 2 3 0 9 0 0 0 0 0 335
Links
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- Frank Ruskey, Combinatorial Generation Algorithm Algorithm 4.24, p. 95.
Crossrefs
Programs
-
Mathematica
Needs["Combinatorica`"]; f[list_] := Sort[NestList[RotateLeft, list, Length[list]-1]]; Flatten[Table[Distribution[Map[Length, Map[Union, Union[Map[f, Strings[{0, 1}, n]]]]], Range[n]], {n, 1, 12}]]
Comments