A203415 Vandermonde determinant of the first n nonprimes (A018252).
1, 3, 30, 1680, 201600, 87091200, 1103619686400, 275463473725440000, 240529195987579699200000, 1163776461866305616609280000000, 344605941225348705438623229542400000000, 3717059729911125118574880410324812431360000000000
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..42
Programs
-
Magma
A018252:=[n : n in [1..250] | not IsPrime(n) ]; A203415:= func< n | n eq 1 select 1 else (&*[(&*[A018252[k+2] - A018252[j+1]: j in [0..k]]): k in [0..n-2]]) >; [A203415(n): n in [1..30]]; // G. C. Greubel, Feb 29 2024
-
Mathematica
z=20; nonprime = Join[{1}, Select[Range[250], CompositeQ]]; (* A018252 *) f[j_]:= nonprime[[j]]; v[n_]:= Product[Product[f[k] - f[j], {j,1,k-1}], {k,2,n}]; d[n_]:= Product[(i-1)!, {i,1,n}]; Table[v[n], {n,1,z}] (* this sequence *) Table[v[n+1]/v[n], {n,1,z}] (* A203416 *) Table[v[n]/d[n], {n,1,z}] (* A203417 *)
-
SageMath
A018252=[n for n in (1..250) if not is_prime(n)] def A203415(n): return product(product(A018252[k+1]-A018252[j] for j in range(k+1)) for k in range(n-1)) [A203415(n) for n in range(1,31)] # G. C. Greubel, Feb 29 2024
Comments