cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203416 a(n) = A203415(n+1)/A203415(n).

Original entry on oeis.org

3, 10, 56, 120, 432, 12672, 249600, 873180, 4838400, 296110080, 10786406400, 49621572000, 355053404160, 34613526528000, 211189410432000, 1910897049600000, 21311651380219200, 274774815041126400, 62908970812047360000
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2012

Keywords

Crossrefs

Programs

  • Magma
    A018252:=[n : n in [1..250] | not IsPrime(n) ];
    A203416:= func< n | n eq 1 select 3 else (&*[A018252[n+1] - A018252[j+1]: j in [0..n-1]]) >;
    [A203416(n): n in [1..30]]; // G. C. Greubel, Feb 29 2024
    
  • Mathematica
    z=20;
    nonprime = Join[{1}, Select[Range[250], CompositeQ]]; (* A018252 *)
    f[j_]:= nonprime[[j]];
    v[n_]:= Product[Product[f[k] - f[j], {j,1,k-1}], {k,2,n}];
    d[n_]:= Product[(i-1)!, {i,1,n}];
    Table[v[n], {n,1,z}]             (* A203415 *)
    Table[v[n+1]/v[n], {n,1,z}]      (* this sequence *)
    Table[v[n]/d[n], {n,1,z}]        (* A203417 *)
  • SageMath
    A018252=[n for n in (1..250) if not is_prime(n)]
    def A203416(n): return product(A018252[n]-A018252[j] for j in range(n))
    [A203416(n) for n in range(1,31)] # G. C. Greubel, Feb 29 2024