A203427 a(n) = w(n+1)/(4*w(n)), where w = A203426.
-3, 48, -1000, 25920, -806736, 29360128, -1224440064, 57600000000, -3018173044480, 174359297654784, -11011033460963328, 754709361539940352, -55801305000000000000, 4427218577690292387840, -375183514207494575620096, 33824309717272203758665728, -3232463698006063164519284736, 326417514496000000000000000000
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..345
Programs
-
Magma
[(-2*(n+2))^n*(n+1)/4: n in [1..20]]; // G. C. Greubel, Dec 05 2023
-
Mathematica
(* First program *) f[j_]:= 1/(2 j + 2); z = 12; v[n_]:= Product[Product[f[k] - f[j], {j, k-1}], {k, 2, n}]; 1/Table[v[n], {n, z}] (* A203426 *) Table[v[n]/(4 v[n + 1]), {n, z}] (* A203427 *) (* Second program *) Table[(-2*(n+2))^n*(n+1)/4, {n,20}] (* G. C. Greubel, Dec 05 2023 *)
-
SageMath
[(-2*(n+2))^n*(n+1)/4 for n in range(1,21)] # G. C. Greubel, Dec 05 2023
Formula
a(n) = (1/4) * (n+1) * (-2*(n+2))^n. - Andrei Asinowski, Nov 03 2015
Extensions
Name corrected by Andrei Asinowski, Nov 03 2015
Terms a(14) onward added by G. C. Greubel, Dec 05 2023