A203430 Vandermonde determinant of the first n numbers (1,3,4,6,7,9,10,...) = (j+floor(j/2)).
1, 2, 6, 180, 12960, 18662400, 84652646400, 12068081270784000, 6568897997313146880000, 157325632547489652827750400000, 16698920220108665726304214056960000000, 101984821172231138973752227905335721984000000000
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..40
Programs
-
Magma
A203430:= func< n | n eq 1 select 1 else (&*[(&*[k-j+Floor((k+1)/2)-Floor((j+1)/2): j in [0..k-1]]) : k in [1..n-1]]) >; [A203430(n): n in [1..25]]; // G. C. Greubel, Sep 27 2023
-
Mathematica
f[j_]:= j + Floor[j/2]; z = 20; v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}] d[n_]:= Product[(i-1)!, {i,n}] Table[v[n], {n,z}] (* this sequence *) Table[v[n+1]/v[n], {n,z}] (* A203431 *) Table[v[n]/d[n], {n,z}] (* A203432 *)
-
SageMath
def A203430(n): return product(product(k-j+((k+1)//2)-((j+1)//2) for j in range(k)) for k in range(1, n)) [A203430(n) for n in range(1, 31)] # G. C. Greubel, Sep 27 2023
Comments