cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A203430 Vandermonde determinant of the first n numbers (1,3,4,6,7,9,10,...) = (j+floor(j/2)).

Original entry on oeis.org

1, 2, 6, 180, 12960, 18662400, 84652646400, 12068081270784000, 6568897997313146880000, 157325632547489652827750400000, 16698920220108665726304214056960000000, 101984821172231138973752227905335721984000000000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Comments

Each term divides its successor, as in A203431, and each term is divisible by the corresponding superfactorial, A000178(n), as in A203432.

Crossrefs

Programs

  • Magma
    A203430:= func< n | n eq 1 select 1 else (&*[(&*[k-j+Floor((k+1)/2)-Floor((j+1)/2): j in [0..k-1]]) : k in [1..n-1]]) >;
    [A203430(n): n in [1..25]]; // G. C. Greubel, Sep 27 2023
    
  • Mathematica
    f[j_]:= j + Floor[j/2]; z = 20;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    d[n_]:= Product[(i-1)!, {i,n}]
    Table[v[n], {n,z}]            (* this sequence *)
    Table[v[n+1]/v[n], {n,z}]     (* A203431 *)
    Table[v[n]/d[n], {n,z}]       (* A203432 *)
  • SageMath
    def A203430(n): return product(product(k-j+((k+1)//2)-((j+1)//2) for j in range(k)) for k in range(1, n))
    [A203430(n) for n in range(1, 31)] # G. C. Greubel, Sep 27 2023

A203431 a(n) = v(n+1)/v(n), where v=A203430.

Original entry on oeis.org

2, 3, 30, 72, 1440, 4536, 142560, 544320, 23950080, 106142400, 6107270400, 30569011200, 2198617344000, 12197035468800, 1061932177152000, 6440034727526400, 662645678542848000, 4347023441080320000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    A203431:= func< n | n eq 1 select 2 else (&*[n-j+Floor((n+1)/2)-Floor((j+1)/2): j in [0..n-1]]) >;
    [A203431(n): n in [1..25]]; // G. C. Greubel, Sep 27 2023
    
  • Mathematica
    f[j_]:= j + Floor[j/2]; z = 20;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    d[n_]:= Product[(i-1)!, {i,n}]
    Table[v[n], {n,z}]            (* A203430 *)
    Table[v[n+1]/v[n], {n,z}]     (* this sequence *)
    Table[v[n]/d[n], {n,z}]       (* A203432 *)
  • SageMath
    def A203431(n): return product(n-j+((n+1)//2)-((j+1)//2) for j in range(n))
    [A203431(n) for n in range(1, 31)] # G. C. Greubel, Sep 27 2023

Extensions

Typo in the definition corrected by Vaclav Kotesovec, Jun 09 2025

A203434 a(n) = A203433(n)/A000178(n) where A000178=(superfactorials).

Original entry on oeis.org

1, 1, 3, 6, 45, 189, 3402, 30618, 1299078, 25332021, 2507870079, 106698472452, 24487299427734, 2283997201168644, 1209640056157393380, 248218139523497121576, 302358334494179897593596, 136861610819571430116630660
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    Barnes:= func< n | (&*[Factorial(j): j in [1..n-1]]) >;
    f:= func< k | (&*[k+1-j+Floor((k+2)/2)-Floor((j+1)/2): j in [1..k]]) >;
    [1] cat [(&*[f(k): k in [1..n-1]])/Barnes(n): n in [2..20]]; // G. C. Greubel, Sep 19 2023
    
  • Mathematica
    f[j_]:= j + Floor[(j+1)/2]; z = 20;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    d[n_]:= Product[(i-1)!, {i,n}]
    Table[v[n], {n,z}]             (* A203433 *)
    Table[v[n+1]/v[n], {n,z}]      (* A014402 *)
    Table[v[n]/d[n], {n,z}]        (* A203434 *)
  • SageMath
    def barnes(n): return product(factorial(j) for j in range(n))
    def f(k): return product(k-j+(k//2)-(j//2) for j in range(k))
    [product(f(k) for k in range(1, n) )//barnes(n) for n in range(1,31)] # G. C. Greubel, Sep 19 2023
Showing 1-3 of 3 results.