cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A203986 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of {1,2,...,k*n} into n k-element subsets having the same sum.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 4, 2, 1, 0, 1, 1, 1, 0, 32, 0, 1, 0, 1, 1, 1, 29, 305, 392, 11, 1, 0, 1, 1, 1, 0, 4331, 0, 6883, 0, 1, 0, 1, 1, 1, 263, 63261, 2097719, 3245664, 171088, 84, 1, 0, 1, 1, 1, 0, 1025113, 0, 2549091482, 0, 5661874, 0, 1, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 09 2012

Keywords

Comments

A(n,k) = 0 if n>1 and k>0 and (k=1 or k*(n-1) mod 2 = 1).
The element sum of each subset is k*(k*n+1)/2.

Examples

			A(0,0) = 1.
A(1,1) = 1: {1}.
A(2,2) = 1: {1,4}, {2,3}.
A(3,3) = 2: {1,5,9}, {2,6,7}, {3,4,8}; {1,6,8}, {2,4,9}, {3,5,7}.
A(4,2) = 1: {1,8}, {2,7}, {3,6}, {4,5}.
A(2,4) = 4: {1,2,7,8}, {3,4,5,6}; {1,3,6,8}, {2,4,5,7}; {1,4,5,8}, {2,3,6,7}; {1,4,6,7}, {2,3,5,8}.
Square array A(n,k) begins:
  1, 1, 1,  1,    1,       1,          1, ...
  1, 1, 1,  1,    1,       1,          1, ...
  1, 0, 1,  0,    4,       0,         29, ...
  1, 0, 1,  2,   32,     305,       4331, ...
  1, 0, 1,  0,  392,       0,    2097719, ...
  1, 0, 1, 11, 6883, 3245664, 2549091482, ...
		

Crossrefs

Cf. A168238 (bisection of row n=2), A203017 (row n=3), A104185 (bisection of column k=3), A203435 (column k=4).
Main diagonal gives A321230.

Programs

  • Maple
    b:= proc() option remember; local i, j, t, k, m; m:= args[nargs-1]; k:= args[nargs]; if args[1]=0 then `if`(nargs=3, 1, b(args[t] $t=2..nargs)) elif args[1]<1 then 0 else add(`if`(args[j] `if`(n=0 or k=0, 1, b((k*(n*k+1)/2 +k/97) $n, k*n, k)/n!):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[args_List] := b[args] = Module[{nargs = Length[args], k = args[[-1]], m = args[[-2]]}, Which[args[[1]] == 0, If[nargs == 3, 1, b[args[[2 ;; nargs]]]], args[[1]] < 1, 0, True, Sum[If[args[[j]] < m, 0, b[Join[Sort[Table[args[[i]] - If[i == j, m + 1/97, 0], {i, 1, nargs - 2}]], {m - 1, k}]]], {j, 1, nargs - 2}] ]]; A[n_, k_] := If[n == 0 || k == 0, 1, b[Join[Array[(k*(n*k + 1)/2 + k/97) &, n], {k*n, k}]]/n!]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jan 21 2015, after Alois P. Heinz *)

A264813 Number of permutations of 3 indistinguishable copies of 1,...,n such that the first and second copies of j are adjacent and there are exactly j numbers between the second and the third copy of j.

Original entry on oeis.org

1, 0, 1, 1, 0, 3, 6, 0, 53, 199, 0, 2908, 13699, 0, 369985, 2135430, 0, 87265700, 611286653, 0
Offset: 0

Views

Author

Alois P. Heinz, Nov 25 2015

Keywords

Comments

a(n) = 0 for n == 1 (mod 3).

Examples

			a(0) = 1: the empty permutation.
a(2) = 1: 221121.
a(3) = 1: 223321131.
a(5) = 3: 223325534411514, 225523344531141, 552244253341131.
a(6) = 6: 221121665544336543, 225523366534411614, 225526633544361141, 446611415563322532, 552266253344631141, 665544336543221121.
		

Crossrefs

A203017 Number of partitions of {1,2,...,3n} into 3 n-element subsets having the same sum.

Original entry on oeis.org

1, 0, 1, 2, 32, 305, 4331, 63261, 1025113, 17495345, 313692810, 5838204047, 112185853894, 2213711510395, 44691175805738, 920173212324164, 19274796589413439, 409908483736507979, 8835309887111026335, 192739853119591626715, 4250191938786946069812, 94641409538083474973850
Offset: 0

Views

Author

Alois P. Heinz, Jan 06 2012

Keywords

Comments

The element sum of each subset is n*(3*n+1)/2 = A005449(n).

Examples

			a(0) = 1: {}, {}, {}.
a(1) = 0: there is no partition of {1,2,3} into 3 1-element subsets having the same sum.
a(2) = 1: {1,6}, {2,5}, {3,4}.
a(3) = 2: {1,5,9}, {2,6,7}, {3,4,8}; {1,6,8}, {2,4,9}, {3,5,7}.
		

Crossrefs

Row n=3 of A203986.

Programs

  • Maple
    b:= proc() option remember; local i, j, t, k, m; m:= args[nargs-1]; k:= args[nargs-0]; if args[1]=0 then `if`(nargs=3, 1, b(args[t]$t=2..nargs)) elif args[1]<1 then 0 else add(`if`(args[j] b((n*(3*n+1)/2 +n/97)$3, 3*n, n)/`if`(n>0, 6, 1):
    seq(a(n), n=0..10);
  • Mathematica
    b[args_] := b[args] = Module[{nargs = Length[args], k = args[[-1]], m = args[[-2]]}, Which[args[[1]] == 0, If[nargs == 3, 1, b[args[[2 ;; nargs]] ]], args[[1]]<1, 0, True, Sum[If[args[[j]] < m, 0, b[Join[Sort[Table[ args[[i]] - If[i == j, m + 1/97, 0], {i, 1, nargs - 2}]], {m - 1, k}]]], {j, 1, nargs-2}]]];
    A[n_, k_] := If[n == 0 || k == 0, 1, b[Join[Array[(k*(n*k + 1)/2 + k/97)&, n], {k*n, k}]]/n!];
    a[k_] := A[3, k];
    a /@ Range[0, 10] (* Jean-François Alcover, Dec 05 2020, after Alois P. Heinz *)
Showing 1-3 of 3 results.