cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A104185 Number of partitions of the set 1, 2, 3, ..., 6n+3 into 2n+1 sets of 3 elements each, such that each 3-element set has the same sum (there are no such partitions unless there are 6n+3 elements).

Original entry on oeis.org

1, 2, 11, 84, 1296, 24293, 703722, 24212879, 1157746949, 63552536107
Offset: 0

Views

Author

Joshua Zucker, Mar 11 2005

Keywords

Examples

			a(1) = 2 because with 9 elements they can be partitioned (9 5 1) (8 4 3) (7 6 2) or (9 4 2) (8 6 1) (7 5 3)
		

References

  • Dossey, Giordano, McCrone and Weir, Mathematics methods and modeling for today's mathematics classroom, p. 134

Crossrefs

Bisection of column k=3 of A203986. - Alois P. Heinz, Jan 09 2012

Programs

  • Scheme
    ; Program to generate terms of the sequence available from Joshua Zucker on request.

Extensions

More terms from Guenter Stertenbrink
The terms 1157746949, 63552536107 were found by Don Knuth, Sep 04 2009

A168238 Number of different 0-moment rowing configurations for 4n rowers.

Original entry on oeis.org

1, 4, 29, 263, 2724, 30554, 361677, 4454273, 56546511, 735298671, 9749613914, 131377492010, 1794546880363, 24798396567242, 346130144084641, 4873560434459530, 69149450121948083, 987844051312409668, 14198028410251734447, 205181815270346718199
Offset: 1

Views

Author

Jeffrey Shallit, Nov 21 2009

Keywords

Comments

Also the number of ways to assign 2n +1's and 2n -1's to the numbers 1,2,...,4n such that the sum is 0, assuming 1 gets the sign +1.

Examples

			For n = 2 there are 4 solutions to the 8-man rowing problem.
For n=1 the unique solution is 1+4 = 2+3. For n=2 there are 4 different solutions: 1+2+7+8 = 3+4+5+6, 1+3+6+8 = 2+4+5+7, 1+4+5+8 = 2+3+6+7, 1+4+6+7 = 2+3+5+8. - _Michel Marcus_, May 25 2013
		

Crossrefs

Bisection of row n=2 of A203986. - Alois P. Heinz, Jan 09 2012
Cf. A227850.

Programs

  • Mathematica
    b[L_List] := b[L] = Module[{nL = Length[L], k = L[[-1]], m = L[[-2]]}, Which[L[[1]] == 0, If[nL == 3, 1, b[L[[2 ;; nL]]]], L[[1]] < 1, 0, True, Sum[If[L[[j]] < m, 0, b[Join[Sort[Table[L[[i]] - If[i == j, m + 1/97, 0], {i, 1, nL - 2}]], {m - 1, k}]]], {j, 1, nL - 2}]]];
    A[n_, k_] := If[n==0 || k==0, 1, b[Join[Array[(k (n k + 1)/2 + k/97)&, n], {k n, k}]]/n!];
    a[n_] := A[2, 2n];
    Array[a, 20] (* Jean-François Alcover, Aug 19 2018, after Alois P. Heinz *)

Extensions

a(6)-a(20) from Alois P. Heinz, Jan 09 2012

A203435 Number of partitions of {1,2,...,4n} into n 4-element subsets having the same sum.

Original entry on oeis.org

1, 1, 4, 32, 392, 6883, 171088, 5661874, 242038179, 13147317481
Offset: 0

Views

Author

Alois P. Heinz, Jan 01 2012

Keywords

Comments

The element sum of each subset is 8n+2. The larger terms were computed with Knuth's dancing links algorithm.

Examples

			a(1) = 1: {1,2,3,4}.
a(2) = 4: {1,2,7,8}, {3,4,5,6}; {1,3,6,8}, {2,4,5,7}; {1,4,5,8}, {2,3,6,7}; {1,4,6,7}, {2,3,5,8}.
		

Crossrefs

Column k=4 of A203986.

Programs

  • Maple
    b:= proc() option remember; local i, j, t, m; m:= args[nargs]; if args[1]=0 then `if`(nargs=2, 1, b(args[t] $t=2..nargs)) elif args[1]<1 then 0 else add(`if`(args[j] `if`(n=0, 1, b(((8*n+2)+4/97) $n, 4*n)/n!): seq(a(n), n=0..6);
  • Mathematica
    b[l_] := b[l] = Module[{nl = Length[l], k = l[[-1]], m = l[[-2]]}, Which[l[[1]] == 0, If[nl == 3, 1, b[l[[2 ;; nl]]]], l[[1]] < 1, 0, True, Sum[If[l[[j]] < m, 0, b[Join[Sort[Table[l[[i]] - If[i == j, m + 1/97, 0], {i, 1, nl - 2}]], {m - 1, k}]]], {j, 1, nl - 2}]]];
    a[n_] := If[n == 0, 1, b[Join[Array[8*n + 2 + 4/97& , n], {4*n, 4}]]/n!];
    Table[a[n], {n, 0, 6}] (* Jean-François Alcover, Jun 03 2018, adapted from Maple *)

A203017 Number of partitions of {1,2,...,3n} into 3 n-element subsets having the same sum.

Original entry on oeis.org

1, 0, 1, 2, 32, 305, 4331, 63261, 1025113, 17495345, 313692810, 5838204047, 112185853894, 2213711510395, 44691175805738, 920173212324164, 19274796589413439, 409908483736507979, 8835309887111026335, 192739853119591626715, 4250191938786946069812, 94641409538083474973850
Offset: 0

Views

Author

Alois P. Heinz, Jan 06 2012

Keywords

Comments

The element sum of each subset is n*(3*n+1)/2 = A005449(n).

Examples

			a(0) = 1: {}, {}, {}.
a(1) = 0: there is no partition of {1,2,3} into 3 1-element subsets having the same sum.
a(2) = 1: {1,6}, {2,5}, {3,4}.
a(3) = 2: {1,5,9}, {2,6,7}, {3,4,8}; {1,6,8}, {2,4,9}, {3,5,7}.
		

Crossrefs

Row n=3 of A203986.

Programs

  • Maple
    b:= proc() option remember; local i, j, t, k, m; m:= args[nargs-1]; k:= args[nargs-0]; if args[1]=0 then `if`(nargs=3, 1, b(args[t]$t=2..nargs)) elif args[1]<1 then 0 else add(`if`(args[j] b((n*(3*n+1)/2 +n/97)$3, 3*n, n)/`if`(n>0, 6, 1):
    seq(a(n), n=0..10);
  • Mathematica
    b[args_] := b[args] = Module[{nargs = Length[args], k = args[[-1]], m = args[[-2]]}, Which[args[[1]] == 0, If[nargs == 3, 1, b[args[[2 ;; nargs]] ]], args[[1]]<1, 0, True, Sum[If[args[[j]] < m, 0, b[Join[Sort[Table[ args[[i]] - If[i == j, m + 1/97, 0], {i, 1, nargs - 2}]], {m - 1, k}]]], {j, 1, nargs-2}]]];
    A[n_, k_] := If[n == 0 || k == 0, 1, b[Join[Array[(k*(n*k + 1)/2 + k/97)&, n], {k*n, k}]]/n!];
    a[k_] := A[3, k];
    a /@ Range[0, 10] (* Jean-François Alcover, Dec 05 2020, after Alois P. Heinz *)

A321230 Number of set partitions of [n^2] into n n-element subsets having the same sum.

Original entry on oeis.org

1, 1, 1, 2, 392, 3245664, 6534071578530
Offset: 0

Views

Author

Alois P. Heinz, Oct 31 2018

Keywords

Examples

			a(0) = 1: empty.
a(1) = 1: 1.
a(2) = 1: 14|23.
a(3) = 2: 168|249|357, 159|267|348.
		

Crossrefs

Main diagonal of A203986.

Formula

a(n) = A203986(n,n).
Showing 1-5 of 5 results.