cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A203986 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of {1,2,...,k*n} into n k-element subsets having the same sum.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 4, 2, 1, 0, 1, 1, 1, 0, 32, 0, 1, 0, 1, 1, 1, 29, 305, 392, 11, 1, 0, 1, 1, 1, 0, 4331, 0, 6883, 0, 1, 0, 1, 1, 1, 263, 63261, 2097719, 3245664, 171088, 84, 1, 0, 1, 1, 1, 0, 1025113, 0, 2549091482, 0, 5661874, 0, 1, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 09 2012

Keywords

Comments

A(n,k) = 0 if n>1 and k>0 and (k=1 or k*(n-1) mod 2 = 1).
The element sum of each subset is k*(k*n+1)/2.

Examples

			A(0,0) = 1.
A(1,1) = 1: {1}.
A(2,2) = 1: {1,4}, {2,3}.
A(3,3) = 2: {1,5,9}, {2,6,7}, {3,4,8}; {1,6,8}, {2,4,9}, {3,5,7}.
A(4,2) = 1: {1,8}, {2,7}, {3,6}, {4,5}.
A(2,4) = 4: {1,2,7,8}, {3,4,5,6}; {1,3,6,8}, {2,4,5,7}; {1,4,5,8}, {2,3,6,7}; {1,4,6,7}, {2,3,5,8}.
Square array A(n,k) begins:
  1, 1, 1,  1,    1,       1,          1, ...
  1, 1, 1,  1,    1,       1,          1, ...
  1, 0, 1,  0,    4,       0,         29, ...
  1, 0, 1,  2,   32,     305,       4331, ...
  1, 0, 1,  0,  392,       0,    2097719, ...
  1, 0, 1, 11, 6883, 3245664, 2549091482, ...
		

Crossrefs

Cf. A168238 (bisection of row n=2), A203017 (row n=3), A104185 (bisection of column k=3), A203435 (column k=4).
Main diagonal gives A321230.

Programs

  • Maple
    b:= proc() option remember; local i, j, t, k, m; m:= args[nargs-1]; k:= args[nargs]; if args[1]=0 then `if`(nargs=3, 1, b(args[t] $t=2..nargs)) elif args[1]<1 then 0 else add(`if`(args[j] `if`(n=0 or k=0, 1, b((k*(n*k+1)/2 +k/97) $n, k*n, k)/n!):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[args_List] := b[args] = Module[{nargs = Length[args], k = args[[-1]], m = args[[-2]]}, Which[args[[1]] == 0, If[nargs == 3, 1, b[args[[2 ;; nargs]]]], args[[1]] < 1, 0, True, Sum[If[args[[j]] < m, 0, b[Join[Sort[Table[args[[i]] - If[i == j, m + 1/97, 0], {i, 1, nargs - 2}]], {m - 1, k}]]], {j, 1, nargs - 2}] ]]; A[n_, k_] := If[n == 0 || k == 0, 1, b[Join[Array[(k*(n*k + 1)/2 + k/97) &, n], {k*n, k}]]/n!]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jan 21 2015, after Alois P. Heinz *)

A321282 Number of set partitions of [n^2] into n subsets having the same sum.

Original entry on oeis.org

1, 1, 1, 9, 2650, 100664383, 808087012923418
Offset: 0

Views

Author

Alois P. Heinz, Nov 01 2018

Keywords

Examples

			a(3) = 9: 12345|69|78, 1239|456|78, 1248|357|69, 1257|348|69, 1347|258|69, 1356|249|78, 159|2346|78, 168|249|357, 159|267|348.
		

Crossrefs

Programs

  • Maple
    b:= proc(l, n) option remember; `if`(n=0, 1, add(`if`(n>l[j],
           0, b(sort(subsop(j=l[j]-n, l)), n-1)), j=1..nops(l)))
        end:
    a:= n-> b([n*(1+n^2)/2$n], n^2)/n!:
    seq(a(n), n=0..5);
  • Mathematica
    b[l_, n_] := b[l, n] = If[n == 0, 1, Sum[If[n > l[[j]], 0, b[Sort[ ReplacePart[l, j -> l[[j]] - n]], n-1]], {j, 1, Length[l]}]];
    a[n_] := b[Table[n(1+n^2)/2, {n}], n^2]/n!;
    a /@ Range[0, 5] (* Jean-François Alcover, May 04 2020, after Maple *)

Formula

a(n) = A275714(n^2,n).
Showing 1-2 of 2 results.