cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A275714 Number T(n,k) of set partitions of [n] into k blocks with equal element sum; triangle T(n,k), n>=0, 0<=k<=ceiling(n/2), read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 4, 0, 1, 0, 1, 7, 3, 1, 0, 1, 0, 9, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 35, 43, 0, 0, 1, 0, 1, 62, 102, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 595, 0, 68, 0, 1, 0, 1, 361, 1480, 871, 187, 17, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2016

Keywords

Examples

			T(8,1) = 1: 12345678.
T(8,2) = 7: 12348|567, 12357|468, 12456|378, 1278|3456, 1368|2457, 1458|2367, 1467|2358.
T(8,3) = 3: 1236|48|57, 138|246|57, 156|237|48.
T(8,4) = 1: 18|27|36|45.
T(9,3) = 9: 12345|69|78, 1239|456|78, 1248|357|69, 1257|348|69, 1347|258|69, 1356|249|78, 159|2346|78, 168|249|357, 159|267|348.
Triangle T(n,k) begins:
00 :  1;
01 :  0,  1;
02 :  0,  1;
03 :  0,  1,   1;
04 :  0,  1,   1;
05 :  0,  1,   0,    1;
06 :  0,  1,   0,    1;
07 :  0,  1,   4,    0,   1;
08 :  0,  1,   7,    3,   1;
09 :  0,  1,   0,    9,   0,   1;
10 :  0,  1,   0,    0,   0,   1;
11 :  0,  1,  35,   43,   0,   0,  1;
12 :  0,  1,  62,  102,   0,   0,  1;
13 :  0,  1,   0,    0,   0,   0,  0, 1;
14 :  0,  1,   0,  595,   0,  68,  0, 1;
15 :  0,  1, 361, 1480, 871, 187, 17, 0, 1;
		

Crossrefs

Columns k=0-5 give: A000007, A000012 (for n>0), A058377, A112972, A317806, A317807.
Row sums give A035470 = 1 + A112956.
T(n^2,n) gives A321282.
Cf. A248112.

Programs

  • Mathematica
    Needs["Combinatorica`"]; T[n_, k_] := Count[(Equal @@ (Total /@ #)&) /@ KSetPartitions[n, k], True]; Table[row = Table[T[n, k], {k, 0, Ceiling[n/2]}]; Print[n, " ", row]; row, {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 20 2017 *)

A321230 Number of set partitions of [n^2] into n n-element subsets having the same sum.

Original entry on oeis.org

1, 1, 1, 2, 392, 3245664, 6534071578530
Offset: 0

Views

Author

Alois P. Heinz, Oct 31 2018

Keywords

Examples

			a(0) = 1: empty.
a(1) = 1: 1.
a(2) = 1: 14|23.
a(3) = 2: 168|249|357, 159|267|348.
		

Crossrefs

Main diagonal of A203986.

Formula

a(n) = A203986(n,n).
Showing 1-2 of 2 results.