A203466 a(n) = A203306(n)/A000178(n) where A000178 are superfactorials.
1, 1, 10, 15180, 97199847360, 124679879327832253286400, 2359315315713931476611812172370616909824000, 69427548091550819116702789435220590352184299509517898727953530880000000
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..16
- R. Chapman, A polynomial taking integer values, Mathematics Magazine, 29 (1996), 121.
Crossrefs
Cf. A203306.
Programs
-
Magma
F:= Factorial; [1] cat [(&*[(&*[F(k+1) - F(j): j in [1..k]])/Factorial(k): k in [1..n-1]]): n in [2..20]]; // G. C. Greubel, Sep 19 2023
-
Mathematica
f[j_]:= j!; z = 10; v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}] d[n_]:= Product[(i-1)!, {i,n}] Table[v[n], {n,z}] (* A203306 *) Table[v[n]/d[n], {n,z}] (* A203466 *)
-
SageMath
f=factorial; [product(product(f(k+1) - f(j) for j in range(1, k+1))//factorial(k) for k in range(1, n)) for n in range(1,21)] # G. C. Greubel, Sep 19 2023
Extensions
Name edited by Michel Marcus, May 17 2019